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Abstract

Widespread adoption of just-in-time (JIT) production has reduced inventory holdings. This
paper measures the frequency of JIT adoption among public firms and quantifies a trade-off cre-
ated by JIT between firm profitability and vulnerability to supply disruptions. Empirically, JIT
adopters experience higher sales and less volatility on average while also exhibiting heightened
sensitivity to aggregate supply conditions and weather events faced by their suppliers. I explain
these facts in a structurally estimated general equilibrium model of JIT production. Relative to
a counterfactual economy without JIT, the baseline model implies higher firm profitability in
normal times but a deeper contraction amid a supply disruption. A transition to an equilibrium
with less JIT and larger inventory stocks leads to a 4% output loss.
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1 Introduction

Up to 70% of manufacturers have reportedly adopted just-in-time (JIT) production, a management

philosophy that aims to minimize the time between orders.1 Firms adopt JIT to cut costs associated

with managing large material purchases and storing idle stocks. Instead, these firms commit to

placing smaller more frequent orders from suppliers.2 Consequently, lean inventory management

has contributed to the approximately 20% decline in the aggregate inventory-to-sales ratio since

1970.3

Do improvements in inventory management matter for macroeconomic fluctuations? Theoreti-

cally, in general equilibrium, inventories have been found to be immaterial for aggregate dynamics

(Khan and Thomas, 2007; Iacoviello et al., 2011). Empirically, some find that inventory manage-

ment improvements decreased aggregate volatility (Davis and Kahn, 2008) while others (Stock and

Watson, 2002) find that it was broadly inconsequential.

This paper offers a different perspective on the role of lean inventories in driving aggregate

fluctuations, finding that it can create macroeconomic fragility in the face of unexpected supply

disruptions such as those experienced from the onset of COVID-19. I document evidence of a

trade-off from a dataset of JIT firms and quantitatively assess the role that lean production plays at

the aggregate level in a structurally estimated heterogeneous firms model.

I first measure the frequency of JIT adoption among public firms by comparing firm inven-

tory holdings to historical industry-level inventory holdings.4 Based on this measure, JIT adoption

increased in popularity from 1980 through the late 2000s. Using my measure of JIT adoption, I

provide firm-level evidence linking the JIT adoption decision to higher firm sales and lower firm

volatility. This provides motivating evidence as well as a set of moments that I use when struc-
1In 2015, the Compensation Data Manufacturing & Distribution Survey found that 71% of surveyed firms employ

leanmanufacturing. Similarly, in 2007, the IndustryWeek/MPICensus ofManufacturers found that 70%of respondents
had implemented lean manufacturing.

2Ohno (1988) provides a detailed history of JIT which started with Toyota’s Kanban system.
3U.S. Bureau of Economic Analysis, Ratios of nonfarm inventories to final sales of domes-

tic business [A812RC2Q027SBEA], retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/A812RC2Q027SBEA.

4I validate this approach by comparing JIT firms identified from this approach to a narrower set of JIT firms identified
in the accounting literature through recorded public announcements.
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turally estimating the model. Within firms, JIT adoption is associated with a 25% increase in sales,

and sales per worker, and a 55% increase in earnings. In addition, JIT firms experience between a

4% to 18% decline in sales growth volatility, employment growth volatility, and earnings growth

volatility. These empirical results, though not causal, are consistent with positive selection into JIT

which subsequently yields firm-level efficiency gains as in my model.

I then exploit variation external to the firm and document that JIT adopters are more exposed

to supply disruptions as proxied by fluctuations in supply chain pressures according to the New

York Fed Global Supply Chain Pressure Index. At the firm level, sales among JIT firms decline

more strongly than their non-JIT counterparts when there is an increase in supply chain pressures.

JIT firms experience an additional 2.5% decline in sales compared to non-JIT firms. In addition,

JIT adopters experience a sharper drop in sales when their suppliers are faced with adverse weather

events. My analysis points to heightened sensitivity among JIT firms upon the realization of external

supply shocks, indicating that an economy composed of more JIT producers is less resilient to such

disturbances.

In light of these empirical facts, I build and structurally estimate a dynamic general equilibrium

model of JIT production. The model features a distribution of firms that differ in idiosyncratic

productivity, inventory holdings, and inventory management strategy. Materials, needed for pro-

duction, can be acquired subject to a stochastic fixed order cost. JIT firms draw order costs from

a distribution that is first order stochastically dominated by those of non-JIT firms. Implementing

JIT requires incurring an initial adoption cost and a smaller continuation cost thereafter. In a given

period, firms must choose their JIT status, how much to order, and how much to produce.

I numerically solve and structurally estimate my baseline model via the simulated method of

moments (SMM) using data from 1980 to 2019. Relative to a counterfactual economy without

JIT, the baseline economy features lower overall inventory holdings and higher output. In addition,

because JIT adoption leads to a reduction in fixed order costs, JIT adopters can better align their

material input usage with realized productivity. As a result, firm-level volatility is lower than in the

counterfactual economy as JIT firms can smooth out their ordering cycles.
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Whereas individual adopters benefit from JIT in normal times, an economy comprised of more

lean producers is more vulnerable to supply disruptions. I model a shock to fixed order costs, cal-

ibrated to match the drop in U.S. real GDP during the onset of the COVID-19 pandemic, and find

that the baseline economy experiences a decline in output along the transition that is 60% larger

than in the counterfactual economy. An unexpected spike in fixed order costs causes firms’ ordering

inaction regions to expand, leading to a decline in orders which reduces inventory investment. With

fewer material inputs on hand, firm sales also fall. At the aggregate level, the economy therefore ex-

periences both a decline in final sales and inventory investment. These effects are more pronounced

in the baseline economy where firms carry fewer stocks to begin with. In Appendix D, I show that

this result also holds in a version of the model in which there is aggregate uncertainty about fixed

order costs.

Finally, in light of recent discussions around re-shoring and achieving supply chain “resilience,”

I examine how the JIT economywould transition to a new steady state that features less JIT adoption

and higher inventory holdings. I find that along the transition to an equilibrium that features 25%

less JIT adoption, the stock of inventories increases by about 20% while output falls by 4% and

consumption-equivalent welfare declines by -2.4%.

In short, my empirical and theoretical analysis quantifies a trade-off between long-run gains and

macroeconomic vulnerability to supply disruptions. Firms benefit in normal times from pursuing a

lean inventory strategy, however upon the realization of a supply disruption, an economy populated

by more JIT firms experiences a deeper contraction.

Inventory investment has long been of interest as a potential source of macroeconomic volatil-

ity.5 Seminal contributions developed production smoothing models (Ramey and Vine, 2004;

Eichenbaum, 1984), stock out avoidance models (Kahn, 1987), and (S,s) models (Scarf, 1960;

Caplin, 1985) of inventory investment. Khan and Thomas (2007) elegantly models inventories

in general equilibrium and finds that they play little to no role in amplifying or dampening business
5See for instance Ahmed et al. (2004), McConnell and Perez-Quiros (2000), McCarthy and Zakrajsek (2007), Irvine

and Schuh (2005), and McMahon and Wanengkirtyo (2015).
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cycles.6 My model is similar though I introduce an endogenous JIT adoption decision and analyze

a shock to fixed order costs rather than an aggregate productivity shock. Another related paper is

Alessandria et al. (2023), which develops a rich two-country general equilibrium model and studies

unexpected shocks to domestic and international shipping delays. I focus on analyzing the firm-

level JIT adoption decision and its implications in a closed-economy model. The fixed order cost

shock that I study encompasses shipping delays among other factors that may shift the probability

of placing an order.

This paper also speaks to the management literature that focuses on assessing the gains to JIT.

Kinney and Wempe (2002) finds that JIT adopters outperform non-adopters, primarily through

profit margins.7 Gao (2018) examines the role of JIT production in corporate cash hoarding. My

paper provides a bridge between evidence documented in the management literature and the rich

literature on inventories in macroeconomics by highlighting how JIT production can matter for

aggregate outcomes.

Furthermore, this paper relates to the literature on supply chain disruptions. On the empirical

front, I adopt a strategy similar to Barrot and Sauvagnat (2016) to determine whether JIT producers

are disproportionately exposed to unexpected weather events. Other empirical work has assessed

how shocks propagate through a network of firms.8 Similarly, Cachon et al. (2007) assesses em-

pirical evidence of the bullwhip effect along the supply chain. From a theoretical perspective, my

paper relates to models of heterogeneous firms, sunk costs, and supply chains. As previously noted,

Alessandria et al. (2023) study delays in a general equilibrium model. Furthermore, Meier (2020)

models supply chain disruptions in the context of time to build. My paper explicitly links supply

disruptions to an important source of investment at the aggregate level, inventory accumulation.

The rest of the paper is organized as follows. Section 2 documents evidence that is consistent

with the stabilizing effects of JIT at the firm level along with the exposure to unexpected shocks

that it engenders at the macro level. Sections 3 and 4 develop the general equilibrium model of lean
6Iacoviello et al. (2011) comes to a similar conclusion through a different model. On the other hand, Wen (2011)

builds a stock out avoidance model and finds that inventories can stabilize aggregate fluctuations.
7Nakamura et al. (1998) as well as Roumiantsev and Netessine (2008) find similar evidence.
8For instance, Carvalho et al. (2021) does this in the context of the 2011 Japanese earthquake.
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production. I estimate the model in Section 5 . Section 6 quantifies the aforementioned trade-off

associated with JIT, and Section 7 concludes.

2 Empirical Patterns Among JIT Firms

I start by describing my approach to measuring JIT producers. I then document empirical evidence

indicating that these JIT producers are more efficient and yet more exposed to supply disruptions. I

use this as motivating evidence for the model outlined in Section 3. This analysis will also provide

moments and external validation to the model once I structurally estimate it.

2.1 A New Measure of JIT Adoption

I develop a measure of lean production among public firms by comparing firm-level inventory

holdings to historical industry inventory holdings. For a given two-digit NAICS sector, I compute

the median inventory-to-sales ratio from 1971 to 1979. Then, for each year from 1980 to 2019,

I define a lean producer as a firm whose inventory-to-sales ratio is below the pre-1980 industry

median inventory-to-sales ratio.

Ideally, one would measure JIT by observing which firms actually implement it or announce

their intention to do so. In practice, this is a challenging undertaking as firms may not always

explicitly disclose their intention or decision to adopt JIT. However, since a hallmark of JIT is the

commitment to reducing or eliminating inventories, it stands to reason that if we observe significant

declines in inventory holdings among firms in an industry, then it this must be due to the adoption of

JIT and related technologies. In AppendixA, I study the JIT adoption decision among a narrower set

of manufacturing firms whose decision to adopt JIT is identified based on public announcements.

Using this alternative definition of JIT, I verify that inventory-to-sales ratios decline within the firm

following the adoption of JIT. In addition, I verify that the majority of the firms in this narrower set

of JIT producers are also identified as JIT producers by the approach that I take here.

Figure 1 plots the measured frequency of JIT adoption based on my measure. This measure
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Figure 1: Frequency of JIT Adoption
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Note: The figure plots the measured frequency of JIT adoption over time.

implies that the frequency of JIT production trended up through the 1980s and part of the 1990s,

consistent with evidence in the operations management literature which finds that JIT was popu-

larized in the 1970s and 1980s following the success of the Toyota Kanban system. Around the

mid 1990s, the frequency of adoption continued to increase, though at a slower pace, and peaked

around 2010. The leveling off in the popularity of JIT observed from the mid-to-late 2000s could

be attributed to uncertainty during the Great Recession, which perhaps activated precautionary in-

ventory holding motives, or due to the formation of intricate and geographically vast supply chains

which may have resulted in longer lead times. Over the 2010s, the frequency of adoption declined

slightly though remained at above 70% in my sample.
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Table 1: JIT Adoption and Firm Performance

Sales Sales per worker Earnings

JIT 0.257*** 0.254*** 0.552***
(0.016) (0.012) (0.057)

Fixed effects Firm, Sector ˆ Year Firm, Sector ˆ Year Firm, Sector ˆ Year
Firms 4,821 4,821 4,821
Observations 45,477 45,477 45,477

Note: The table reports panel regression results based on regression (1). The dependent variables are log sales, log
sales per worker, and the inverse hyperbolic sine of earnings. Earnings are defined as income before extraordinary
items. Two-digit NAICS codes are specified in the sector-by-year fixed effects. Standard errors are double clustered at
the firm and fiscal year levels. The standard deviations of the dependent variables are 2.34, 0.87, and 3.25, respectively.
*** denotes 1% significance, ** denotes 5% significance, and * denotes 10% significance.

2.2 Empirical Evidence

I use my measure of JIT adoption along with other firm-level balance sheet information from Com-

pustat Fundamentals Annual data over the aforementioned years to examine differences in outcomes

between JIT and non-JIT firms. To complete certain exercises in this section, I merge my sample

with additional information such as the New York Fed’s Global Supply Chain Pressure Index and

county-level weather events from the National Oceanic and Atmospheric Administration (NOAA).

My final sample consists of an unbalanced panel of about 5,000 unique manufacturing firms

spanning the years 1980 to 2019. Appendix A provides summary statistics.

I document four sets of facts about JIT adopters. First, JIT adoption is associated with higher

sales, higher sales per worker, and higher earnings, the latter of which is measured as operating

income.9 I estimate regressions of the following form:

yijt “ γJITijt `X1
ijtβ ` δjt ` δi ` νijt, (1)

where yijt is an outcome variable for firm i belonging to sector j in year t. The regressor of interest,

JITijt, is a time-varying indicator for whether a firm is a JIT adopter in a given year. I specify firm
9This finding is consistent with Fullerton and McWatters (2001) and Cua et al. (2001).
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Table 2: JIT Adoption and Firm Volatility

Sales growth Employment growth Earnings growth
volatility volatility volatility

JIT -0.180*** -0.043* -0.164***
(0.029) (0.024) (0.048)

Fixed effects Sector ˆ Year Sector ˆ Year Sector ˆ Year
Firms 2,452 2,449 2,452
Observations 16,333 16,274 16,317

Note: The table reports panel regression results based on regression (2). The dependent variables are rolling five-year
standard deviations of firm sales growth, employment growth, and earnings growth. Lagged log capital stock and age
in sample are specified as a controls. Two-digit NAICS codes are specified in the sector-by-year fixed effects. Standard
errors are double clustered at the firm and fiscal year levels. *** denotes 1% significance, ** denotes 5% significance,
and * denotes 10% significance.

and sector-by-year fixed effects in these regressions. Table 1 reports the regression results. The first

column implies that JIT adopters experience a roughly 25% increase in sales following adoption.

In addition, firms experience an estimated 25% increase in sales per worker and a 55% increase in

earnings following JIT adoption. The results imply changes of 10%, 30%, and 17% of one standard

deviation in the outcomes, respectively. The regression results allude to the benefits of JIT in my

model. Facing lower fixed order costs, adopters hold fewer inventories in favor of placing smaller

more frequent orders. Upon shrinking their inventory stocks, adopters also incur fewer carrying

costs. These cost reductions enable JIT firms to allocate more resources to production, allowing

them to generate more sales. As a result, these coefficients reflect both selection and treatment

effects.

Second, JIT adopters experience less micro volatility. I estimate the following regression:

yijt “ γJITijt `X1
ijtβ ` δjt ` ηijt, (2)

where yijt now denotes rolling 5-year standard deviations of sales growth or employment growth for

firm i in sector j in year t. Table 2 reports the results. Adopters see a roughly 18%, 4%, and 16%

decline in sales growth volatility, employment growth volatility, and earnings growth volatility,
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Table 3: JIT Adoption and Supply Chain Pressures

(1) (2)
Sales Sales

Supply chain pressure 0.018
(0.012)

Supply chain pressure ˆ JIT -0.025** -0.024**
(0.009) (0.009)

Fixed effects Firm Firm, Sector ˆ Year
Firms 2,766 2,766
Observations 20,608 20,608

Note: The table reports panel regression results from regression (3). The dependent variable is the log of firm sales.
Lagged firm assets and lagged finished goods inventories are specified as controls as well as firm age and contempo-
raneous unemployment rate, real GDP growth, and manufacturing PPI inflation. Two-digit NAICS codes are specified
in the sector-by-year fixed effects. Standard errors are double clustered at the firm and fiscal year levels. *** denotes
1% significance, ** denotes 5% significance, and * denotes 10% significance.

respectively. This is consistent with the stabilizing role that JIT plays in my model. Due to the

lower fixed ordering costs, firms are able to more easily time their orders and can smooth out their

ordering cycles which moderates the variability of other outcomes as well.

I next document facts relating to firm-level exposure brought on by JIT, exploiting aggregate

variation and examining sensitivity to aggregate supply conditions and weather events. The regres-

sion results accord with the model in that adopters are less insured against unanticipated supply

disruptions, and an economy with more JIT firms is more exposed to such events.

Third, JIT adopters tend to be more sensitive to aggregate supply disruptions. I merge my data

with aggregate data from the New York Fed Supply Chain Pressure Index and estimate regressions

that interact adoption with supply chain pressures. Supply pressures spiked following the onset of

COVID-19 as bottlenecks and other disruptions that hampered order fulfillment. If JIT firms are

more sensitive to supply disruptions, then we should observe more adverse outcomes for these firms

relative to non-JIT producers when supply chain pressures rise. I therefore estimate the following
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regression:

yijt “ γ1JITijt´1 ` γ2GSCPIt ` γ3

“

JITijt´1 ˆ GSCPIt
‰

`X1
ijtβ ` FE` εijt, (3)

where GSCPI denotes the global supply chain pressure index, which I standardize, and X reflects

a set of controls which includes firm age in the sample, a lag of total assets and finished goods

inventories, and contemporaneous unemployment rate, real GDP growth, and manufacturing PPI

inflation. The coefficient γ3 measures the extent to which JIT firms exhibit more or less sensitivity

to increases in supply chain pressures.

Table 3 reports the regression results. Based on column (1), a one standard deviation increase in

the supply chain pressure index is associated with a roughly 2.5% stronger decline in sales among

JIT firms. Turning to column (2), when controlling for sector-by-year fixed effects, which subsumes

the second term of equation (3), I find that the magnitude of the excess sensitivity of JIT firms is

similar, implying that JIT firm sales decline by about 2.4% more than non-JIT firms.

Finally, JIT adopters are more sensitive to weather events faced by their suppliers. I examine this

by merging my data with county-level weather events from NOAA using the Compustat Segment

Files and links from Barrot and Sauvagnat (2016). I then estimate the following regression:

yist “ ψ1JITit´1 ` ψ2WeatherEventst ` ψ3

“

JITit´1 ˆWeatherEventst
‰

`X1
istβ ` FE` ωist. (4)

I consider two ways of defining the “WeatherEvent” regressor: (i) as an indicator for a weather

event occurring in the zip code where supplier s is headquartered in a given year and (ii) as the

dollar value of property damage caused by the weather event. I collect information on county-

level weather events from NOAA and link these events to public firm headquarter zip codes via the

aforementioned Barrot and Sauvagnat (2016) links.

Ideally, one would want to link upstream weather events to the zip codes in which suppliers’

production takes place. The Compustat data is limited in this respect since once cannot necessarily

assume that production occurs at or near a firm’s headquarters. Nonetheless, weather events may
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Table 4: JIT Adoption and Weather Events
(1) (2) (3) (4)

Weather event indicator -0.003
(0.036)

Weather event indicator ˆ JIT -0.007 -0.195***
(0.038) (0.069)

Property damage -0.0002
(0.002)

Property damage ˆ JIT -0.0003 -0.010***
(0.002) (0.003)

Fixed effects Firm, Supplier, Year Firm, SupplierˆYear Firm, Supplier, Year Firm, SupplierˆYear
Firms 196 68 196 68
Observations 1885 317 1885 317

Note: The table reports panel regression results based on regression (4). The dependent variable is log sales. The
control variables specified include lagged JIT indicator, lagged log capital stock, and firm age in sample. Standard
errors are double clustered at the customer-supplier level. *** denotes 1% significance, ** denotes 5% significance,
and * denotes 10% significance.

disrupt other relevant operations which might take place at a firm’s headquarters such as logistics.

Overall, I interpret this data limitation as a form of measurement error which likely biases my

estimates toward zero.

Table 4 provides four sets of results which summarize the estimated sales response to supplier

weather events. The first two columns report the effect of a weather event on sales when specifying

the weather event indicator variable. The final two columns instead report the property damage

with respect to weather events. The point estimates on the interaction between a supplier weather

event and a JIT customer are negative across all specifications and are statistically significant when

controlling for supplier-by-year fixed effects. The latter estimates, reported in columns (2) and

(4), control for upstream time-variation which includes year-specific supplier characteristics such

as age and size, as well as other unobserved shocks that suppliers face in a given year. Given the

more robust set of controls specified in these regressions, columns (2) and (4) reflect my preferred

specifications.

Through the series of links required to estimate these regressions, the sample size is reduced

considerably.10 Nonetheless, in my preferred specifications, I find that on average supplier weather
10Building this sample requires linking weather events to firm (supplier) headquarters in Compustat, then linking

these suppliers to their customers (through the Segment files), and finally linking the customers to their JIT adoption
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events in my sample predicts an additional 19.5% decline in JIT firm sales, and a 1% increase in the

property damage caused by a given weather event is associated with a 1% excess sales contraction

among JIT firms relative to non-JIT firms.

Taken together, the data suggest that JIT adopters benefit from more sales and smoother out-

comes. At the same time, adoption is associated with heightened exposure to aggregate supply con-

ditions and supply disruptions as proxied by local weather events. Mymodel of heterogeneous firms

with inventories, fixed ordering costs, and an endogenous JIT adoption decision can explain these

patterns. The model also allows me to quantitatively assess the impact of JIT amid an unanticipated

aggregate supply disruption, something that cannot be easily captured by firm level regressions.

3 A Model of Just-in-Time Production

Having illustrated the essence of the trade-off in the data, I next build a dynamic general equilibrium

model which will provide quantitative statements about the implications of JIT. Themodel is similar

in spirit to Khan and Thomas (2007) and Alessandria and Choi (2007).

A representative household has preferences over consumption and leisure. The household sup-

plies its labor frictionlessly to the two sectors of the economy: the intermediate goods sector and

the final goods sector. A representative intermediate goods firm produces materials by using labor

and capital. In addition, a continuum of heterogeneous final goods firms make use of labor and

materials to produce using a decreasing returns to scale technology. Final goods producers are het-

erogeneous in idiosyncratic productivity, inventory stocks, and JIT adoption status. All markets are

perfectly competitive.

The representative household is endowed with one unit of time in each period and values con-

sumption and leisure according to the following preferences:11

UpCt, Htq “ logpCtq ` φp1´Htq,

status.
11Rogerson (1988) microfounds these preferences in a model of indivisible labor and lotteries.

13



where φ ą 0 denotes the household’s labor disutility. Total hours worked is denoted by Ht and

labor is paid wage, wt. In addition to wage income, the household earns a dividend each period

from ownership of firms,Dt, and chooses savings on a one period riskless bond,Bt`1, given interest

rate Rt`1. The representative household, facing no aggregate uncertainty, maximizes its utility:

max
Ct,Ht,Bt`1

8
ÿ

t“0

βtUpCt, Htq,

subject to its budget constraint which holds for all t,

Ct `Bt`1 ď RtBt ` wtHt `Dt.

The parameter β P p0, 1q is the household’s subjective discount factor.

The representative intermediate goods firm produces materials using capital Kt and labor Lt

according to:

F pKt, Ltq “ Kα
t L

1´α
t .

Taking prices as given, the problem of the intermediate goods firm is:

max
Kt,Lt

qtF pKt, Ltq ´ wtLt ´RtKt,

where qt denotes the price of the intermediate good.

Finally, a continuum of final goods firms produce using materials,mt, and labor, nt, according

a decreasing returns to scale technology:

yt “ ztm
θm
t nθnt , θn ` θm ă 1,

where idiosyncratic productivity evolves as an AR(1) in logs:

logpzt`1q “ ρz logpztq ` σzεt, εt „ Np0, 1q.
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Figure 2: Decisions of Final Goods Firms

Note: The figure summarizes the order of the decisions made by final goods firms within a period.

Materials are drawn from the firm’s existing inventory stock, st, to use in production. Final goods

firms procure new materials from the intermediate goods firm subject to a stochastic fixed order

cost drawn from a known distribution.

Figure 2 details the final goods producers’ decision-making timeline. Each period consists

of three stages. A producer enters the period with realized productivity, zt, inventory stock, st,

and adoption status, at. In the first stage, the producer decides whether or not to adopt JIT. If a

producer does not enter the period as a continuing adopter, it must pay cs in order to initially adopt.

Alternatively, if the producer enters the period as an adopter, it must pay a smaller continuation cost

0 ă cf ă cs in order to maintain its status as a JIT producer.

Intuitively, adopting JIT requires that a plant repurpose its shop floor, enter into long-term con-

tracts with suppliers to fulfill orders in a timely fashion, and possibly even purchase new technolo-

gies to facilitate information sharing with suppliers. The sunk setup cost encompasses all of these

one-time costs. The continuation cost embodies smaller costs for suppliers to participate in timely

delivery, costs of training labor on JIT best practices, and greater attention or communication re-

quired to share information with suppliers.

In the next stage, producers learn their order costs, ξ „ F pξq, and decide whether or not to

place an order, ot. JIT producers face a more favorable order cost distribution, EpξAq ď EpξNAq.

Lastly, following the adoption and the order decisions, final goods producers decide how much to
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produce.

I characterize the final goods firms’ problem in terms of inventory stocks rather than specific

order or material input choices. In particular, if a firm enters the period with inventory stock st,

its target inventory stock is denoted by s˚t . This means that any orders, if placed, are defined as

ot “ s˚t ´ st. Following the order decision, suppose that inventory stock rst is carried into the

production stage.12 Materials used in production are then defined as mt “ rst ´ st`1 where st`1

refers to the inventory stock carried forward into the next period. In the recursive formulation of the

final goods firm problem that follows, I suppress the time subscript and instead denote next period

variables with a prime.

Stage 1: Adoption Decision

A final goods producer begins the period with pz, s, aq, faces labor-denominated adoption costs

tcs, cfu, and endogenous prices, p, q, and w. The firm first decides whether to adopt JIT. Note that

the adoption status is a binary outcome. The value of adopting is:

V A
pz, s, aq “ max

"

´ pwcpaq `

ż

V O
pz, s, 1, ξqdF pξAq,

ż

V O
pz, s, 0, ξqdF pξNAq

*

, (5)

where

cpaq “

$

’

’

&

’

’

%

cs if no JIT (a “ 0)

cf if JIT (a “ 1),

and V Opz, s, a, ξq refers to the firm’s value in the second stage. Order costs are assumed to be

distributed uniformly: F pξq “ Upξ, ξq.13 The firm’s optimal adoption policy, a1pz, s, aq, solves (5).

12
rs “ s if no order is placed and rs “ s˚ if an order is placed.

13As in Khan and Thomas (2007), I assume uniformly distributed order costs. In my context, uniformly distributed
order costs are appealing because they strengthen the firms’ precautionary inventory holding motive since order costs
are not clustered around a central region as with, for instance, a normal distribution. To the extent that my later re-
sults expose a vulnerability associated with firms carrying too few inventories, this assumption should be relatively
conservative.
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Stage 2: Order Decision

Given the firm’s order cost draw, ξ, also denominated in units of labor, it then decides whether to

place an order, o. If the firm is an adopter, its order cost distribution is first order stochastically

dominated by those of non-adopters. The value in the second stage is

V O
pz, s, a, ξq “ max

"

´ pwξ ` V ˚pz, s, aq, V P
pz, s, aq

*

, (6)

where the value of placing an order is14

V ˚pz, s, aq “ max
s˚ěs

„

´ pqps˚ ´ sq ` V P
pz, s˚, aq



, (7)

and V P pz, s, aq is defined below. The firm’s order problem delivers a threshold rule. In particular,

a firm places an order if and only if the order cost draw is lower than a threshold order cost: ξ ă

ξ˚pz, s, aq where

rξpz, s, aq “
V ˚pz, s, aq ´ V P pz, s, aq

pw
, (8)

and

ξ˚pz, s, aq “ min
`

max
`

ξ, rξpz, s, aq
˘

, ξ
˘

. (9)

Stage 3: Production Decision

Upon choosing its JIT status, deciding whether to place an order, and potentially selecting an order

size, the firm then makes a production decision. Suppose that a firm enters the production stage

with inventory stock rs such that:

rs “

$

’

’

&

’

’

%

s˚
`

z, s, a1pz, s, aq
˘

if order placed

s if no order placed.

14The constraint on the ordering decision allows for only positive orders. In other words, this model abstracts away
from inventory liquidation.
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In the production stage, the firm selects labor, npz, rs, s1, aq, and materials, prs ´ s1q, to maximize

profits. Its value function in the production stage is:

V P
pz, rs, aq “ max

s1Pr0,rss
πpz, rs, s1, aq ` βE

“

V A
pz1, s1, a1q

‰

(10)

where

πpz, rs, s1, aq “ p

„

znpz, rs, s1, aqθnprs´ s1qθm ´ wnpz, rs, s1, aq ´ cms
1



(11)

are period profits. The end of period inventory stock is denoted by s1, and cm is a linear carrying

cost of storing unused inventory.

A final goods producer is said to stock out if it enters the period with no inventories, s “ 0,

and chooses to not place an order. Without any inventories, the firm has no material inputs to draw

from when making its production decision. As a result, the firm forgoes production in that period.

The producer can flexibly restart production in the future conditional on a favorable productivity

realization and order cost draw. I formally define the model equilibrium in Appendix B.

4 Analyzing the Model

The endogenous adoption decision allows the model to replicate important features of the data,

namely, higher profitability and reduced micro volatility among JIT firms. Since implementing JIT

comes at a relatively large sunk cost, not all firms optimally choose to adopt JIT. Figure 3 plots the

adoption frontiers for JIT and non-JIT producers. The shaded area in the lower right corner repre-

sents the region of the state space in which non-JIT firms choose to adopt JIT. This illustrates the

positive selection into adoption implied by the model. Moreover, the scope for initiating adoption

is decreasing in inventory stocks as the value of adopting is higher among firms that are closer to

their ordering thresholds.

At the same time, a producer is likely to remain an adopter conditional on already being one.

This is because the continuation cost of retaining JIT is smaller than the initial sunk cost. Hence,
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Figure 3: Adoption Frontiers

Note: The figure plots the adoption frontier among JIT and non-JIT firms. The solid gray area depicts the region of the
state space in which non-JIT firms select into adoption. The striped area and the gray area jointly denote the region of
the state space in which existing JIT firms choose to remain adopters.

the endogenous adoption decision exhibits persistence. The larger striped area in Figure 3 confirms

this intuition. Only the least productive adopters will opt to abandon JIT. Furthermore, the scope

for exiting adoption is increasing in inventory holdings. The positive selection detailed here could

contribute to the patterns among JIT firms documented in the data. In particular, the decision

to adopt JIT reflects a favorable productivity realization which, when coupled with lower average

order costs, leads firms to reduce their inventory stocks and generate more sales such that there is

an increase in sales per worker.

Figure 4 shows the probability of placing an order as a function of inventories. Consistent with

the decision to select into adoption, order probabilities are increasing in productivity and decreasing

in inventory holdings. The benefits of JIT adoption can be understood by comparing the two panels.

Across both inventory levels, the probability of placing an order is higher for adopters since they

face lower average order costs.

Finally, Figure 5 plots the optimal order size for JIT and non-JIT producers, holding the inven-

tory stock constant. Order sizes among JIT firms never exceed those of non-JIT firms because the
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Figure 4: Ordering Probabilities

Note: The figure plots the probability of placing an order in the ordering stage as a function of inventories. The left
panel plots the probabilities among non-adopters and the right panel plots the probabilities for adopters. The solid
blue line reflects a low productivity establishment in the model while the dashed red line reflects a high productivity
establishment.

former face lower average fixed order costs. At low and high levels of productivity, JIT and non-JIT

firms optimally place similarly sized orders because they are either less profitable and require fewer

material inputs since they generate less sales, or they are more profitable and are able to place larger

orders irrespective of the fixed order costs. At intermediate levels of productivity, the differences

in the fixed order cost distributions faced by JIT and non-JIT firms is important and is where JIT

firms place smaller-sized orders.

5 Structural Estimation

I structurally estimate the model using the micro data analyzed in Section 2. The estimated model

captures important features of the firm-level data including the levels of and covariances between
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Figure 5: Order Size

Note: The figure plots the order size for different realizations of idiosyncratic productivity. The solid blue line reflects
a JIT producer while the dashed red line reflects a non-JIT producer.

inventories and sales as well as the frequency of JIT adoption and mode switching.

There are 14 parameters in themodel. I externally fix seven parameters to match standard targets

in the literature. Table 5 details the annual calibration. The discount factor, β is set to be consistent

with a real rate of 4%. The material share, θm, is set to match the material share in the NBER-CES

database, and the capital share, α, is fixed to match the capital-output ratio. The parameter θn is

set to match an economy-wide labor share of 0.65. The leisure preference is calibrated so that the

household works for one-third of total hours. Finally, I set the order cost lower bounds to zero for

both JIT adopters and non-adopters.

5.1 Simulated Method of Moments

I estimate the remaining seven parameters. The parameter vector to be estimated is

θ “
`

ρz σz ξNA ξA cs cf cm
˘1
.

These parameters residing in θ govern the exogenous productivity process, order costs, adoption

costs, and the carrying cost. The model has no closed form solution, so I solve it using standard
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Table 5: External Parameterization

Description Parameter Value

Discount Factor β 0.962
Material share θm 0.520
Capital share α 0.390
Labor share θn 0.280
Labor disutility φ 2.450
Order cost lower bound ξ

NA
0.000

Order cost lower bound ξ
A

0.000

Note: The table reports the seven calibrated model parameters.

numerical dynamic programming techniques detailed in Appendix B. To parameterize the model,

I employ SMM (Duffie and Singleton, 1993; Bazdresch et al., 2018). This is done by computing a

set of targeted moments in the model and minimizing the weighted distance between the empirical

moments and their model-based analogs.

Specifically, I target 10 moments to estimate the seven parameters. My estimator is therefore

an overidentified SMM estimator. Of the ten moments, four are specific to JIT firms and four to

non-JIT firms. These four moments, which are the same across both types of firms, are: the mean

inventory-to-sales ratio and the covariancematrix of log sales and log inventories, the latter of which

delivers three moments. I final two moments are the observed frequency of JIT adoption and the

frequency of switching out of JIT adoption.15 I specify the asymptotically efficient weightingmatrix

which is the inverse of the covariance matrix of the moments. Appendix C provides a discussion

of the relationship between the moments and parameters which offers some intuition behind the

identification of the model parameters.

Table 6 reports the estimated baseline model parameters, all of which are precisely estimated.16

The technology parameters, ρz and σz, are consistent with parameterizations in the literature (Khan

and Thomas, 2013; Khan et al., 2020; Hennessy and Whited, 2007).
15The empirical moments are listed in Table 7.
16A test of overidentifying restrictions delivers a J-statistic of 3.16 with a p-value of 0.37 for the baseline model. As

a result, I fail to reject that the baseline model is misspecified, lending further support to the validity of my estimates.
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Table 6: Estimated Baseline Parameters

Description Parameter Estimate Standard
error

Productivity shock persistence ρz 0.861 0.0001

Productivity shock dispersion σz 0.108 0.0002

Order cost upper bound (non-JIT) ξNA 0.740 0.0009

Order cost upper bound (JIT) ξA 0.102 0.0009

Sunk cost of adoption cs 0.963 0.0015

Continuation cost of adoption cf 0.067 0.0003

Carrying cost cm 0.158 0.0004

Note: The table reports the point estimates and standard errors for the seven estimated parameters. Standard errors
obtained via numerical differentiation.

The upper support of the order cost distribution among non-adopters is 0.740. On the other

hand, I find that the upper bound of order costs for JIT firms is 0.102. The average order costs

implied by these estimates amount to 10% and 3% of value added. Furthermore, the adoption cost

estimates suggest a meaningful amount of hysteresis in the adoption decision. In particular, firms

pay a continuation cost that is about one quarter of the original sunk cost. Conditional on being

an adopter, the probability of remaining an adopter is 98%. For reference, this estimate is higher

than estimates of the sunk cost of exporting, which place the probability of remaining an exporter

conditional on already being one at 87% (Alessandria and Choi, 2007). In equilibrium, economy-

wide carrying costs are about 2% of value added, a non-negligible amount that prevents firms from

storing too many inventories across time.
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Table 7: Baseline Model vs. Empirical Moments

Moment Model Data

Mean(inventory-sales ratio|non-adopter) 0.283 0.280
(0.004)

Mean(inventory-sales ratio|adopter) 0.128 0.071
(0.001)

Var(log sales |non-adopter) 0.444 0.476
(0.015)

Cov(log sales, log inventories|non-adopter) 0.363 0.305
(0.012)

Var(log inventories|non-adopter) 0.380 0.401
(0.008)

Var(log sales |adopter) 0.381 0.312
(0.008)

Cov(log sales, log inventories|adopter) 0.127 0.244
(0.010)

Var(log inventories|adopter) 0.463 0.429
(0.024)

Frequency of adoption 0.662 0.660
(0.010)

Frequency of switch out of adoption 0.020 0.057
(0.001)

Note: The table reports model-based and empirical moments along with standard errors of the empirical moments.

5.2 Model Fit

Table 7 shows that the model is broadly successful in fitting the empirical moments. The model

is able to reproduce lower average inventory-to-sales ratios, less sales dispersion among JIT firms

relative to non-JIT firms, and empirically relevant adoption frequencies.

To further assess the baseline model’s ability to match the patterns present in the data, I estimate

the empirical regressions reported in Tables 1 and 2 based on a panel of simulated firms from the

estimated baseline model. The results are reported in Table 8. Because the model abstracts away

from an extensive margin of employment, I do not report model-based estimates for output per

worker or employment growth volatility.

Following adoption, firms in the baseline model reduce their inventory-to-sales ratios and ex-

perience a 28% increase in sales, similar to the 25% increase estimated the data. The model also
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Table 8: Empirical and Simulated Regressions

Panel A: Levels

Sales Earnings

Model Data Model Data

0.282 0.257 0.184 0.552
(0.004) (0.016) (0.003) (0.057)

Panel B: Volatility

Sales growth Earnings growth

Model Data Model Data

-0.281 -0.180 -0.347 -0.164
(0.005) (0.029) (0.005) (0.048)

Note: The table reports model-based and empirical regression coefficients with standard deviations and standard errors
in parentheses.

predicts an increase in earnings following adoption, however the magnitude is smaller than in the

data. Furthermore, the baseline model predicts reductions in firm sales volatility of 28% and a 35%

decline in earnings growth volatility among JIT firms, similar though stronger than the 18% and

16% declines estimated in the data, respectively. With precisely estimated parameters delivering

a broadly successful fit to targeted and non-targeted moments in the data, I can now exploit this

structure as a laboratory for quantitative experiments.

6 Quantifying the Aggregate Effects of JIT

I next quantify the aggregate effects of the firm-level decision to adopt JIT. I begin by highlighting

the vulnerability to unanticipated supply disruptions engendered by JIT. I then explore the aggregate

implications of transitioning from a lean economy to a more “resilient” economy that features less

JIT and, consequently, larger inventory stocks.
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Figure 6: Deeper Crisis with More Adoption

Note: The figure plots the output response to a fixed order cost shock that matches the 2.20% annual decline in real
GDP in 2020. The persistence of the shock is set to 0.50.

6.1 Effects of an Unanticipated Supply Disruption

Anatural benchmark against which to compare the estimatedmodel is a world in which JIT adoption

is not possible. I define such a counterfactual by solving a version of the estimated model with

adoption cost parameters cs and cf fixed to be prohibitively large such that no adoption takes place.

Despite enjoying higher profits and smoother sales, an economy populated by lean producers

is more vulnerable to an unexpected supply disruption. To quantify this supply side vulnerability,

I consider an unexpected increase in economy-wide fixed order costs and assume that it evolves

deterministically according to ζt`1 “ ρξζζt where ρ
ξ
ζ “ 0.50 and ζ0 ą 0.17 This shock shifts the

average fixed order cost distribution of JIT and non-JIT producers:

ξ
t
“ ξ ` ζt and ξt “ ξ ` ζt.

I calibrate the size of the order cost shock to reproduce a 2.2% GDP contraction in the baseline
17Consistent with the literature modeling COVID-19, I model the episode as an unanticipated event (Arellano et al.,

2023; Espino et al., 2020).
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Figure 7: Sources of the Stronger Decline in the Baseline Model

Note: The figure plots endogenous responses to a fixed order cost shock that matches the 2.2% annual decline in real
GDP in 2020. The persistence of the shock is set to 0.50. The bars reflect cumulative responses along the transition
back to steady state.

JIT model, in line with the annual contraction observed in U.S. GDP in 2020. I then introduce

the same shock to the counterfactual model and compare the endogenous outcomes across the two

economies. Figure 6 displays the output response to this unexpected shock. The JIT economy sees

a roughly 1.7 percentage point excess output contraction on impact. The total output loss in the

baseline economy, including along the transition back to steady state, is 5.5% while it is 3.4% in

the counterfactual economy.

Figure 7 reports the key differences in endogenous responses between the two models. Amid

the supply disruption, order-placing probabilities decline more in the baseline model relative to the

counterfactual model. As an optimal response to the decline in ordering probabilities, firms in both

economies increase their order sizes. Order sizes, however, rise more in the baseline economy,

mirroring the stronger decline in ordering probabilities.

Despite the increase in order sizes, the extensive margin of ordering dominates so that aggregate

orders decline in both economies though more so in the baseline model. Since inventory investment

is the equal to the value of orders less materials, the stronger decline in aggregate orders relative
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to materials, and the general equilibrium decline in the price of orders in both economies, leads

to a decline in inventory investment. This decline is more pronounced in the baseline economy.18

Hence, from the perspective of the following identity:

Output “ Final sales` Inventory investment,

the excess output contraction in the baseline model comes from both a relatively stronger decline in

final sales and a stronger fall in inventory investment. The relative contributions of final sales and

inventory investment to GDP growth in the baseline model are consistent with what was observed

amid the onset of COVID-19.19

A seemingly minor difference in inventory management strategies across the two models de-

livers a substantial difference in the extent to which the economy falls into crisis amid a supply

disruption. The excess output loss amounts to slightly more than $130 billion, a figure compara-

ble to the funds appropriated to support state and local governments amid the pandemic.20 Lean

inventory management therefore can play a meaningful role in determining the vulnerability of the

economy to unanticipated supply disruptions. During these episodes, the extent to which invento-

ries can serve as a stabilizing force is economically significant.

In Appendix D, I explore a similar shock to fixed order costs but under aggregate uncertainty.

My finding that the JIT economy is more vulnerable to supply disruptions, modeled as a shock to

fixed order costs, continues to hold in this environment.

6.2 Understanding the Source of Supply Vulnerabilities

Firms in the baseline economy are more sensitive to the supply disruption because they carry fewer

inventories. Figure 8 plots the relevant policies for a firm, at an intermediate level of firm produc-
18Amid the contraction, some JIT producers rethink their inventory management practices altogether. As a result,

part of the stronger decline in ordering probabilities in the baseline model relative to the counterfactual model reflects
mode switching since firms that return to being non-JIT producers face higher fixed ordering costs.

19In the data, final sales of domestic product declined by -1.69% in 2020. In the model, final sales decline by 1.77%.
20Coronavirus Aid, Relief, and Economic Security Act, H.R. 748, 116th Congress (2020).
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Figure 8: Ordering During Supply Disruption

Note: The left panel plots a producer’s ordering threshold as a function of its inventory stock in the steady state and
amid a shock to fixed order costs at time t “ 1. The right panel plots the probability of placing an order as a function
of inventories in the steady state and amid the shock to fixed order costs at time t “ 1.

tivity, as a function of inventories. Each panel plots two policies: one which reflects the steady

state and the other which reflects the first period in which the supply disruption is realized. The left

panel plots the ordering threshold policy function, ξ˚pz, s, aq and the right panel plots the ordering

probability.

The downward sloping region of the threshold order policy reflects the relative value of placing

an order, rξpz, s, aq, as defined in equation (8). Recall that the ordering threshold is ξ˚pz, s, aq “

minpmaxpξ, rξpz, s, aqq, ξq. Given its idiosyncratic state, a producer places an order if the relative

value of doing so exceeds the fixed order cost. At higher levels of inventories, the relative value of

ordering additional materials declines until it eventually falls below the lower bound of the order

cost distribution, where ξ˚pz, s, aq “ ξ. Here, the ordering threshold is flat and the probability of

placing an order is zero.

In response to an increase in fixed order costs, the threshold order policy shifts up and ordering

probabilities shift down as the jump in fixed order costs exceeds the increase in the value of placing

an order. Firms with larger stocks of inventories in the steady state, however, are less sensitive to
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the supply disruption as evidenced by the smaller downward shift in the order-placing probabilities

at higher levels of inventories. This is because at higher levels of inventories, the value of plac-

ing an order is already relatively low. Since the counterfactual no JIT model features more firms

operating with larger stocks of inventories, order-placing probabilities do not decline as much in

the counterfactual model, and more firms are able to continue to produce without running out of

materials.

Overall, the sensitivity of the economy to unanticipated supply disruptions depends on the level

of inventories held by firms. The decision of howmany inventories to hold in turn depends on these

order thresholds which are themselves shaped by the decision to adopt JIT.

6.3 Transition to “Resilience”

Finally, I examine how the JIT economy would transition to a “new normal” that features higher

fixed ordering costs. A new steady state with higher fixed ordering costs is intended to capture a

greater risk of supply disruptions such as those experienced during and after the COVID-19 pan-

demic as well as amid heightened geopolitical risks. A prominent example of a firm which moved

away from lean inventories is Toyota following the Fukushima earthquake.21

I consider an increase in economy-wide fixed order costs that generates a roughly 25% decline

in the frequency of adoption in the new steady state. Figure 9 plots four panels which illustrate the

transition from the lean steady state to the new, higher inventory steady state. The top left panel

shows that, along the transition the frequency of JIT adoption gradually declines and ultimately

falls by about 25%. Similarly, the probability of placing an order gradually declines by about 15%.

Faced with higher fixed ordering costs, which represent elevated risks of disrupted order fulfillment,

firms optimally increase their inventory holdings in an effort to buffer against such risks. The

aggregate stock of inventories increases by about 20% along the transition. Meanwhile, output

gradually declines over time and ultimately falls by 4% in the new steady state. Consumption-
21Learning from this episode, Toyota stocked up on its inventory of semiconductors which reportedly allowed it to

weather the worst of the pandemic-related supply disruptions.
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Figure 9: Transition to Higher Inventory Steady State

Note: The figure plots the transition of various endogenous outcomes to a new steady state that features a higher level
of inventories.

equivalent welfare declines as well, falling by -2.4%. This exercise quantifies the potential costs

associated with transitioning to a higher inventory steady state. A deeper analysis about the possible

sources of more frequent supply disruptions after the COVID-19 pandemic, and an exploration of

the incentives to abandon JIT, is beyond the scope of this paper and would be a fruitful avenue for

future research.

7 Conclusion

In normal times, it pays to be lean. I provide empirical evidence of the benefits of JIT inventory

management among publicly traded manufacturers. Upon adopting JIT, firms hold fewer invento-

ries, and observe higher sales and smoother outcomes. JIT firms, however, are more susceptible

to micro and macro supply disruptions. In a rich model of JIT production, firms that adopt JIT

enjoy an increase in earnings and experience less unconditional micro volatility. At the same time,

JIT elevates firm vulnerability to supply disruptions due to low inventory buffers. Amid an unex-
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pected supply disruption, output in the estimated JIT economy contracts substantially more than

a counterfactual economy with less JIT. Adoption, therefore, gives rise to an important trade-off

which implies that inventories can matter for aggregate fluctuations. Economists interested in un-

derstanding fluctuations within firms, and the responsiveness of the economy to aggregate shocks,

particularly supply disruptions, should play close attention to inventories and inventory manage-

ment practices.
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SUPPLEMENTARY MATERIAL

Appendix A Empirics

This section provides summary statistics of the data used in Section 2. The section also includes

further details on the JIT adopters sample, the weather regression results, and an alternativemeasure

of JIT among public firms.

A.1 Sample Construction

My data come from three sources. First, I make use of annual Compustat data to obtain information

on firm-level inventory holdings, sales, and other outcomes. Second, I use the New York Fed’s

Global Supply Chain Pressure index in the regressions that estimate the JIT sensitivity to aggregate

supply conditions. Lastly, for the weather regressions, I collect county-level weather event data

from NOAA and map them to firm headquarter zip codes.

Compustat Data

I make use of Compustat Fundamentals Annual data from 1971-2019. I keep only manufacturers

(four-digit SIC codes between 2000-4000). In addition, I drop firm years in which acquisitions

exceed 5% of total assets to avoid the influence of large mergers. To mitigate for any measure-

ment error, I keep only those firms with non-missing and positive book value of assets, number of

employees, inventories, and sales. All variables are winsorized at the top and bottom 0.5% of the

empirical distribution.

Because the focus of the paper is on JIT, a concept that relates primarily to input inventories,

I define the relevant measure of inventories to be the sum of raw material and works in process

(invrm+invwip). This empirical definition also accords with the structural model developed in

the main text in which producers carry stocks of inputs across time. My final sample consists of

5,912 unique firms. Table A1 reports summary statistics for the variables used.
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Table A1: Compustat Summary Statistics

Variable name Compustat code Mean Median Standard Deviation 25% 75%

Earnings growth ∆ib
ib´1

-0.285 -0.069 6.083 -0.805 0.449
Employment growth ∆empt

empt´1
-0.001 0.000 0.294 -0.083 0.100

Log employment logpemptq -0.594 -0.693 2.023 -2.071 0.825
IHS earnings ihspibtq 0.839 0.850 3.248 -1.578 3.201
Log sales logpsaletq 4.381 4.373 2.338 2.824 5.977
Sales growth ∆salet

salet´1
0.067 0.055 0.413 -0.062 0.178

Sales per worker salet
empt

4.978 4.982 0.868 4.454 5.516
JIT adoption 0.662 1.000 0.473 0.000 1.000

Note: The table reports summary statistics for the relevant variables in the main text. The sample is constructed from
Compustat Fundamentals Annual files for 1980-2019. Sample consists of 5,912 unique firms.

A.2 Validating Inventory-to-Sales-based Measure of JIT

In the main text, I measure JIT adoption based on historical declines of inventory-to-sales ratios.

In this section, I compare this measure of JIT with an alternative measure of JIT that identifies the

adoption of lean production based on financial news reports, press releases, and Form 10-K filings.

These data were kindly provided to me by William Wempe, from his joint work with Michael

Kinney, and Xiaodan Gao. See Kinney and Wempe (2002) and Gao (2018) for further details. This

measure identifies JIT adoption for 177 manufacturing firms in my Compustat sample.

I start by regressing inventory-to-sales ratios on this alternativemeasure of JIT adoption to verify

that inventory-to-sales ratios decline in the years following adoption for these firms. I estimate the

following regression,

yijt`h “ γadoptijt ` δjt ` δi ` εijt,

where the outcome of interest is the inventory-to-sales ratio, and adoptijt is an indicator taking on

a value of one only in the recorded year of adoption. Industry-by-year and firm fixed effects are

specified. The figure plots 95% confidence intervals for a three-year window around the recorded

date of adoption, and shows that inventory holdings decline in the year of adoption and over the

subsequent two years.
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Figure A1: Validation of JIT Indicator
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Note: The figure plots the estimated effect of JIT adoption on the level of inventory-to-sales. 95% confidence bands
are displayed alongside point estimates.

Second, I compare the two measure of JIT adoption to verify that the measure of JIT used in

the main text, which is able to capture more JIT firms, identifies those firms identified from the

text-based approach introduced in this section. Of the 177 JIT adopters identified through this text-

based approach, the measure of JIT based on historical inventory-to-sales ratios identified 152 of

these firms as JIT producers.
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Appendix B Model

B.1 Final Goods Firm

Firm profits are

max
s1,n1

znθnps´ s1qθm ´ cms
1

Maximizing out for n, we obtain

n “

„

θn
w
zps´ s1qθm


1

1´θn

.

Substituting this into the maximization problem, we obtain

max
s1
p1´ θnq

„

z

ˆ

θn
w

˙θn

ps´ s1qθm


1
1´θn

´ cms
1,

or

max
s1
p1´ θnqypz, s, s

1
q ´ cms

1

B.2 Intermediate Goods Firm

The intermediate goods firm problem is:

max
K,L

p

„

qKαL1´α
´RK ´ wL



The assumption that the intermediate goods firm utilizes a Cobb-Douglas production technol-

ogy to produce implies that the intermediate goods firm’s value can be expressed as a linear function

of the aggregate capital stock. As a result, one can solve for q analytically. The price of the inter-

mediate good is:

q “

ˆ

1` r

α

˙αˆ
w

1´ α

˙1´α
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B.3 Equilibrium

An equilibrium is a set of functions,

 

V A, V O, V ˚, V P , s˚, s1, ξ˚, a1, K, L, p, w, q,Γµ
(

,

such that:

1. The household’s first order conditions hold:

p “
1

C
, w “ φC.

2. The intermediate goods firm first order conditions hold:

w “ p1´ αqq

ˆ

K

L

˙α

R “ αq

ˆ

L

K

˙1´α

.

3. V A, V O, V ˚, V P solve the final goods firms’ problem.

4. The market for final goods clears:

C “

ż ż

ypz, s˚, s1, a, ξqdF pξ˚qdµpz, s, aq `

ż ż

ypz, s, s1, a, ξqr1´ dF pξ˚qsdµpz, s, aq

´ cm

ˆ
ż ż

s1pz, s˚, aqdF pξ˚qdµpz, s, aq `

ż ż

s1pz, s, aqr1´ dF pξ˚qsdµpz, s, aq

˙

´K.

5. The market for orders clears:

ˆ

p1´ αqq

w

˙
1´α
α

K “

ż ż

rs˚pz, s, aq ´ ssdF pξ˚qdµpz, s, aq,

where the left hand side denotes the supply of orders, KαL1´α.
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6. The market for labor clears:

H “

ż ż

npz, s˚, s1, ξqdF pξ˚qdµpz, s, aq `

ż ż

npz, s, s1, a, ξqr1´ dF pξ˚qsdµpz, s, aq

`

ż
„
ż ξ˚pz,s,aq

0

ξdF pξq



dµpz, s, aq`

ż

a1pz, s, aqrp1´aqcs`acf sdµpz, s, aq`

ˆ

p1´ αqq

w

˙
1
α

K.

On the right hand side, the first two terms refer to labor demand from the final goods firms,

the third term refers to the labor-denominated order cost, the fourth term refers to the labor-

denominated adoption costs, and the final term refers to labor demand from the orders pro-

ducer, L.

7. The evolution of the distribution of firms is consistent with individual decisions:

Γµpz, s, aq “

ż ż ż

1Adµpz, s, aqdF pξqdΦpεzq

Apz1, s1, a1, ξ, εz;µq “ tpz, s, aq|s
1
pz, s, a, ξ;µq “ s1, z1 “ ρz ` σzεz, a

1
pz, s, a, ξ;µq “ a1u

Φpxq “ Ppεz ď xq,

B.4 Numerical Solution

The model is solved using methods that are standard in the heterogeneous firms literature. The

exogenous productivity process is discretized following Tauchen (1986) which allows me to express

the AR(1) process for log firm productivity as a Markov process. I select Nz “ 11 grid points for

idiosyncratic productivity and Ns “ 200 grid points for the endogenous inventory holding state.

Considering the binary adoption state, this implies that the discretized model has 4,400 grid points.

I solve for the policy functions via value function iteration which is accelerated by the use of

the MacQueen-Porteus error bounds (MacQueen, 1966; Porteus, 1971). This acceleration method

makes use of the contraction mapping theorem to obtain bounds for the true (infinite horizon) value

function. These bounds are used to produce a better update of the value function. The ergodic
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distribution of firms is obtained via nonstochastic simulation as in Young (2010). This histogram-

based method overcomes sampling error issues associated with simulating individual firms in order

to obtain the stationary cross-sectional distribution.

Operationally, I solve the model by initiating a guess of the final goods price, p0. Using the

household and order producer’s optimality conditions, I then obtain the implied wage and orders

price, w0 and q0, given the guess p0. From here, I solve the firm’s problem via value function itera-

tion and then obtain the ergodic distribution. Using the policies and ergodic distribution, I compute

aggregates and the associated market clearing error from the household’s optimality condition. I

update the price based on this error via bisection.

For the unexpected shock exercises, I implement a standard shooting algorithm used to model

deterministic dynamics. I fix the duration of the transition to a predetermined length T so that the

model reaches steady state at T`1. I then solve the final goods firms problem backwards, obtaining

a set of time-indexed policy functions. Using these policies, I push the distribution of final goods

firms forward. With the time-indexed policies and weights in hand, I compute aggregates at each

point in time and iterate on prices until the final goods market clears in each period, 1
pt
“ Cpptq.
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Appendix C Estimation

In this section, I detail the estimation of the model and provide additional results relating to identi-

fication.

C.1 Simulated Method of Moments

The parameter vector to be estimated is θ “
`

ρz σz ξNA ξA cs cf cm
˘1. Estimating θ requires

making a guess, θ0, solving and simulating the model, and computing the different moments. I

collect the targeted empirical moments in a stacked vectormpXqwhich comes from my Compustat

sample. I next stack the model-based moments, which depend on θ, in the vector mpθq. Finally I

search the parameter space to find the pθ that minimizes the following objective

min
θ

`

mpθq ´mpXq
˘1
W

`

mpθq ´mpXq
˘

whereW is the optimal weighting matrix, defined to be the inverse of the covariance matrix of the

moments. I obtain the covariance matrix via a clustered bootstrap, allowing for correlation within

firms. I estimate the parameter vector via particle swarm, a standard stochastic global optimization

solver.

The limiting distribution of the estimated parameter vector pθ is

?
Nppθ ´ θq

d
Ñ Np0,Σq

where

Σ “

ˆ

1`
1

S

˙„ˆ

Bmpθq

Bθ

˙1

W

ˆ

Bmpθq

Bθ

˙´1

and S is the ratio of the number of observations in the simulated data to the number of observa-

tions in the sample.22 I obtain the standard errors by computing the secant approximation to the

partial derivative of the simulated moment vector with respect to the parameter vector. Given the
22S is set to be approximately 8.
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discontinuities induced by the discretized state space, I select a step size of 1%.

C.2 Identification

While the targeted moments jointly determine the parameters to be estimated, there are nonethe-

less moments that are especially important for pinning down certain parameters. I discuss their

informativeness in turn.

Idiosyncratic productivity persistence mostly informs the covariance between log inventory and

log sales. Moreover, the dispersion of idiosyncratic productivity shocks mostly affects variances.

The fixed order costs are strongly related to the mean inventory-to-sales ratios. An increase in

the upper bound of fixed order costs for non-JIT adopters leads to an increase in inventory-to-sales

for non-JIT producers as these firms stock more inventories in order to incur the higher fixed cost

less frequently. On the other hand, an increase in the fixed order cost upper bound for JIT firms

leads to a decrease in the inventory-to-sales ratio for JIT firms. When fixed order costs rise among

JIT firms, less productive JIT producers will abandon JIT and transition to being non-JIT firms. The

remaining JIT producers are leaner and more productive than the firms that switched out of JIT. As

a result, the average inventory-to-sales ratio declines among the pool of continuing JIT producers.

An increase in the sunk cost of adoption leads to less mode switching between JIT and non-JIT.

This is because only relatively more productive firms will choose to select into JIT when the sunk

cost is larger. At the same time, when deciding whether to abandon JIT, producers will recognize

that they must pay a higher sunk cost to re-adopt JIT in the future. As a result, the firm is less likely

to switch out of JIT today.

An increase in the continuation cost of adoption, on the other hand, causes the frequency of

adoption and the probability of switching out of JIT to move in opposite directions. A higher

continuation cost of adoption makes JIT more costly to maintain. As a result, the probability of

switching out of adoption increases. At the same time, this makes non-adopters less likely to initiate

JIT given that these higher continuation costs would have to be incurred in the future.

Finally, the storage cost also affects the distribution of inventory-to-sales ratios. A higher storage
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cost raises the marginal cost of carrying inventories across time, and therefore reduces average

inventory-to-sales ratios across JIT and non-JIT firms alike.

Figure C1: Monotonic Relationships

Note: The figure plots the changes in selected moments to changes in the parameters, in percent relative to moment at
estimated parameter values.

The ten moments jointly determine the seven parameters that reside in vector θ. Figure C1

reports the monotone relationships between selected moments and parameters. Figure C2 reports

the sensitivity of each of the seven parameters to changes in each of the moments. These results

come from an implementation of Andrews et al. (2017). The sensitivity of pθ tompθq is

Λ “ ´

„ˆ

Bmpθq

Bθ

˙1

W

ˆ

Bmpθq

Bθ

˙´1ˆ
Bmpθq

Bθ

˙1

W

I then transform this matrix so that the coefficients reflect the effect on each parameter of a one

standard deviation change in the respective moments.

47



Figure C2: Sensitivity
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Note: The figure plots sensitivity estimates as in Andrews et al. (2017). These estimates describe the changes in each
of the seven parameters to a one standard deviation increase in each moment.
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Appendix D Robustness

In this section I further examine the sensitivity of JIT to supply disruptions by exploring the sensi-

tivity of the baseline economy to a fixed order cost shock based on alternative parameterizations,

and under aggregate uncertainty.

D.1 Sensitivity Analysis

Table D1: Alternative Parameterizations

Description Parameter Value Value
Idiosyncratic productivity persistence ρz 0.82 0.88

Idiosyncratic productivity volatility σz 0.08 0.12

Order cost upper bound (non-adopters) ξNA 0.69 0.78

Order cost upper bound (adopters) ξA 0.05 0.15

Sunk cost of adoption cs 0.91 1.01

Continuation cost of adoption (adopters) cf 0.05 0.07

Carrying cost cm 0.12 0.21

Note: The table reports the alternative parameterizations chosen to compute the excess sensitivity to supply disruptions
associated with JIT.

I start by analyzing the robustness of the unanticipated shock exercise in the main text to dif-

ferent parameterizations. Table D1 reports a number of different parameter specifications. I vary

all parameters in different directions. Figure D1 plots the excess contraction amid a supply dis-

ruption between the JIT and counterfactual economy. Across all specifications, output contracts

more sharply in the JIT economy than in the counterfactual, as shown by the dots residing below

the 45-degree line.
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Figure D1: JIT Vulnerabilities with Alternative Parameters

Note: The figure plots the GDP contraction in response to an unanticipated fixed order cost shock in the baseline
economy (vertical axis) against the GDP contraction in the counterfactual model (horizontal axis) for a variety of
different parameter specifications. The black dot denotes the baseline parameterization estimated in the main text, and
the hollow dots represent the alternative parameterizations. The different parameterizations are detailed in Table D1.
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D.2 Incorporating Aggregate Uncertainty

The supply disruption that I model in the main text takes the form of an unanticipated fixed order

cost shock. After the realization of the shock, agents have perfect foresight about the transition back

to steady state. In this section, I show that my findings extend to an environment in which agents

form expectations over an aggregate shock to fixed order costs.

Aggregate Uncertainty About Fixed Order Costs

I assume that the support of fixed order costs is time varying,

ξ
t
“ ξ ` xt and ξt “ ξ ` xt.

In addition, I assume that xt is a two-dimensional state, xt “ r0.0 0.1s, where xt “ 0.0 reflects

normal times and xt “ 0.1 reflects a supply disruption. I set the transition matrix to be,

Πpx1|xq “

»

—

–

0.95 0.05

0.25 0.75

fi

ffi

fl

,

which implies that supply disruptions are infrequent and that a transition from a supply disruption

back to normal times is relatively quick. The aggregate state space is now comprised of x and µ,

the distribution of firms, and we can denote it as Ψ “ px, µq.

Solving the JIT model with aggregate shocks requires tracking prices and the distribution of

firms, an infinite-dimensional object, across time. Following Krusell and Smith (1998), I solve the

model by assuming that agents exhibit bounded rationality and use aggregate material usage to track

the distribution across time. I define a log linear mapping between prices and aggregate materials,

log xM 1
pxq “ βM0 pxq ` β

M
1 pxq logMpxq

log pppxq “ βp0pxq ` β
p
1pxq logMpxq.
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Below I summarize the steps taken to solve the model:

1. Simulate tXtu
T
t“1 for some large T and guess an initial set of coefficients: βMp0q0 , βMp0q1 , βpp0q0 ,

and βpp0q1 .

2. For each iteration i:

(a) Solve the final goods firm problem on a grid based on pppiq and xM
1piq, where pppiq and

xM
1piq are obtained using the coefficients βMpiq0 , β

Mpiq
1 , β

ppiq
0 , β

ppiq
1 .

(b) Simulate the model, using tXtu
T
t“1, and obtain a time series tpt,Mtu

T
t“1, where pt re-

flects the equilibrium price which is obtained by clearing markets in each period (not

by using the pricing rule, pp).

(c) Based on the simulated data, update the forecast rules viaOLS to obtain βMpi`1q
0 , βMpi`1q

1 ,

β
ppi`1q
0 , and βppi`1q

1 . If the coefficients are sufficiently close, up to a pre-specified toler-

ance, then exit. Otherwise, update the each coefficient as a convex combination of the

old guess and the new estimate. Set i “ i` 1 and return to (a).

I specify a grid of dimensionNzˆNsˆNaˆNX ˆNM “ 5ˆ 60ˆ 2ˆ 2ˆ 10, and I simulate the

model for 5,500 periods and discard the first 500 periods to reduce the influence of initial conditions.

I specify a tolerance of 10´3 for the forecasting rules to converge.

Solution and Accuracy Statistics

The converged forecast rules are reported in Table D2. Table D3 reports accuracy statistics for each

model based on static and dynamic forecasts for aggregate materials and prices. The first row of the

table reports the mean percentage difference between realized simulated data and its corresponding

dynamic forecast based on the forecasting rules (Den Haan, 2010). The bottom two rows report the

R2 of each forecast rule based on static forecasts.
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Table D2: Forecasting Rules

Baseline Counterfactual
βM0 px “ x1q -2.661 -3.176

βM0 px “ x2q -0.054 -0.247

βM1 px “ x1q -2.339 -2.577

βM1 px “ x2q 0.089 1.5e-10

βp0px “ x1q 1.449 1.836

βp0px “ x2q -0.204 -0.056

βp1px “ x1q 1.324 1.678

βp1px “ x2q -0.262 -0.129

Note: The table reports the forecasting rules.

Table D3: Accuracy Statistics

Baseline Counterfactual

M p M p
Mean percentage difference 0.286 0.195 0.277 0.029
Forecast regression R2

x “ x1 1.000 1.000 1.000 1.000
x “ x2 1.000 1.000 1.000 1.000

Note: The table reports accuracy statistics.

53



Impulse Response to a Fixed Order Cost Shock

To compute the impulse response to a shock to xt, I follow the Koop et al. (1996) approach and

compute the generalized impulse response. More specifically, I simulate 5,000 economies for 50

periods. I do this twice: once for a set of simulations that does not impose the shock, and again for

simulations which do impose the shock. I then compute the impulse response for GDP as,23

GDPIRF
t “

1

5000

5000
ÿ

j“1

„

log

ˆ GDPshock
jt

GDPno shock
jt

˙

ˆ 100



.

Figure D2 plots the impulse response and cumulative impulse response in the baseline and coun-

terfactual economies. The left panel shows that the counterfactual no JIT economy contracts more

than the baseline JIT economy on impact. This is in contrast to the unanticipated shock exercise and

has to do with the fact, under aggregate uncertainty, ordering probabilities are less sensitive to the

supply disruption. The reason that ordering probabilities become less sensitive when we introduce

aggregate uncertainty about fixed order costs is because firms are able to build precautionary stocks

of inventories. Indeed, aggregate inventories are about 11% higher in an unconditional simulation

of the baseline model with aggregate uncertainty relative to the no aggregate uncertainty steady

state baseline model.

However, as the shock unwinds the baseline economy indeed contracts more than the counter-

factual economy based on the cumulative impulse responses plotted in the right panel of Figure D2.

This is because, while orders are less sensitive to the supply disruption under aggregate uncertainty,

orders still contract. Since the baseline economy still features lower inventory stocks than the coun-

terfactual economy, firms in the baseline economy still have fewer inventories to draw from when

producing and therefore still experience a stronger andmore protracted contraction in material input

usage relative to the counterfactual economy.

Overall, the findings documented in this section are consistent those obtained from the unantic-

ipated shock exercise and indicate that the vulnerability of JIT producers to supply disruptions is
23See Koop et al. (1996) for more details. Terry (2017) also provides a detailed summary of this approach.

54



Figure D2: Output Response to Fixed Order Cost Shock

Note: The figure depicts the response of output to a positive shock to fixed order costs, averaged over 5,000 simulated
economies.

also present in an environment that features aggregate uncertainty.

Figure D3 plots the cumulative impulse response of other endogenous aggregates in the model,

mirroring the endogenous responses plotted in Figure 7.
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Figure D3: Cumulative Impulse Response of Other Aggregates to
Fixed Order Cost Shock

Note: The figure depicts the response of the probability of placing an order, order size, materials, and sales to a positive
shock to fixed order costs, averaged over 5,000 simulated economies.
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