
SUPPLEMENTARY MATERIALS FOR “SPREAD TOO THIN: THE IMPACT

OF LEAN INVENTORIES”

Appendix A Empirics

This section includes further details on the JIT adopters sample, an alternative measure of JIT, and

estimates of JIT firms’ sensitivity to weather events faced by their suppliers.

A.1 Sample Construction

My data come from three sources. First, I use annual Compustat data to obtain information on firm-

level inventory holdings, sales, and other outcomes. Second, I use the GSCPI in the regressions

that estimate the JIT sensitivity to aggregate supply conditions. Lastly, for the weather regressions

reported in Appendix A.3, I collect county-level weather event data from NOAA and map weather

events to firm headquarter zip codes.

My compustat sample covers the years 1971-2019. I keep only manufacturers (two-digit NAICS

codes 31, 32, and 33). In addition, I drop firm-years in which acquisitions exceed 5% of total assets

to avoid the influence of large mergers. To guard against measurement error, I keep only those firms

with non-missing and positive book value of assets, number of employees, inventories, and sales.

All variables are winsorized at the top and bottom 0.5% of the empirical distribution.

As discussed in the text, I define input inventories as the sum of raw material and work-in-

process (invrm+invwip). This empirical definition also accords with the structural model devel-

oped in the main text in which producers carry stocks of inputs across time. My final sample consists

of 5,912 unique firms. Table A1 reports summary statistics for the variables used.

A.2 Validating Inventory-to-Sales-based Measure of JIT

In this section, I explore the robustness of my measure of JIT to alternative assumptions. I then

explore an alternative measure of JIT that identifies the adoption of lean production based on fi-
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Table A1: Compustat Summary Statistics

Variable name Compustat code Mean Median Standard 25% 75%
definition deviation

Earnings growth ∆ib
ib´1

-0.285 -0.069 6.083 -0.805 0.449
Employment growth ∆empt

empt´1
-0.001 0.000 0.294 -0.083 0.100

IHS earnings ihspibtq 0.839 0.850 3.231 -1.578 3.201
Log sales logpsaletq 4.381 4.373 2.338 2.824 5.977
Sales growth ∆salet

salet´1
0.067 0.055 0.413 -0.062 0.178

Log sales per worker salet
empt

4.978 4.982 0.868 4.454 5.516
JIT adoption 0.676 1.000 0.468 0.000 1.000

Note: The table reports summary statistics for the relevant variables in Section 2 of the text. The sample is constructed
from Compustat Fundamentals Annual files for 1980-2019. Sample consists of 5,912 unique firms.

nancial news reports, press releases, and Form 10-K filings. These data were kindly provided to

me by William Wempe, from his joint work with Michael Kinney, and Xiaodan Gao. See Kinney

and Wempe (2002) and Gao (2018) for further details. This measure identifies JIT adoption for 177

manufacturing firms in my Compustat sample.

A.2.1 Measuring JIT Under Alternative Assumptions

In this section, I consider alternative assumptions in the construction of my JIT measure. First, I

define JIT based on a comparison of inventory-to-sales ratios relative to pre-1980s mean inventory-

to-sales ratios within sectors rather than median inventory-to-sales ratios. Second, I measure JIT

by comparing inventory-to-sales to historical inventory-to-sales within a sector from 1971-1985

rather than 1971-1980. Third, I define JIT by comparing inventory-to-sales to historical inventory-

to-sales within a narrower 4-digit NAICS industry rather than 2-digit NAICS sector. Fourth, I define

JIT based on total inventories (raw material, work-in-process, and finished goods) rather than only

input inventories (raw material and work-in-process). Fifth, I define JIT based on real inventory-

to-sales ratios rather than nominal inventory-to-sales ratios, using manufacturing inventory and

sales deflators from the National Income and Product Accounts (NIPA) tables. Figure A1 plots the

evolution of the share of measured JIT adopters in my sample according to the baseline definition
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as well as these alternative definitions. Overall, these various measures of JIT evolve similarly over

time, with my baseline definition generally residing in the middle of the range of these various

measures.

Figure A1: Alternative Measures of JIT Adoption
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Note: The figure plots alternative measures of the share of JIT adopters in the sample based on variations to the
definition in equation (1) of the main text.

A.2.2 A Text-Based Measure of JIT

I next examine a measure of JIT that identifies adoption of lean production based on financial news

reports, press releases, and Form 10-K filings for a narrower set of manufacturing firms.

I start by regressing inventory-to-sales ratios on this alternative measure of JIT adoption to verify

that inventory-to-sales ratios decline in the years following adoption for these firms. I estimate the

following regression,

yijt`h “ γadoptijt ` δjt ` δi ` εijt,

where the outcome of interest is the inventory-to-sales ratio, and adoptijt is an indicator taking on

a value of one only in the recorded year of adoption. Industry-by-year and firm fixed effects are
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Figure A2: Validation of JIT Indicator
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Note: The figure plots the estimated effect of JIT adoption on the level of inventory-to-sales. 95% confidence bands
are displayed alongside point estimates.

specified. The figure plots 95% confidence intervals for a three-year window around the recorded

date of adoption and shows that inventory holdings decline in the year of adoption and over the

subsequent two years.

Next, I compare the two measures of JIT adoption. Table A2 reports the share of JIT firms in a

given 3-digit NAICS industry (and identified through the text-based approach). Based on these re-

ported frequencies, we see that most of the 177 JIT firms identified through the text-based approach

reside in NAICS sector 33 and, specifically, within fabricated metal manufacturing, machinery man-

ufacturing, computer and electronic product manufacturing, electrical equipment, appliance, and

component manufacturing, and transportation equipment manufacturing. The final column of Ta-

ble A2 reports each industry’s average inventory-to-sales ratio from 1980 to 2019 relative to its

pre-1980 median. Across all industries, we see a decline in the inventory-to-sales ratio relative to

pre-1980, albeit to varying degrees.
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Table A2: Text-Based JIT Adopters by Industry

Description 3-digit Percent of Inventory-to-sales
NAICS text-based adopters relative to pre-1980s medians (percent)

Food manufacturing 311 1.96 -6.76
Textile mills 313 1.31 -0.05
Textile product mills 314 0.65 -0.78
Leather and allied product manufacturing 316 1.31 -4.93
Wood product manufacturing 321 0.65 -0.74
Paper manufacturing 322 1.31 -2.97
Printing and related support activities 323 0.65 -5.61
Chemical manufacturing 325 2.61 -1.74
Plastics and rubber manufacturing 326 1.96 -4.05
Nonmetallic mineral product manufacturing 327 0.65 -2.73
Primary metal manufacturing 331 3.27 -0.03
Fabricated metal product manufacturing 332 7.19 -7.15
Machinery manufacturing 333 15.03 -6.42
Computer and electronic product manufacturing 334 35.29 -5.36
Electrical equipment, appliance, and component manufacturing 335 7.19 -5.19
Transportation equipment manufacturing 336 11.76 -5.78
Furniture and related product manufacturing 337 3.27 -9.39
Miscellaneous manufacturing 339 3.92 -3.34

Note: The table lists 3-digit NAICS industry codes and descriptions as well as the share of JIT of firms identified
through the text-based approach. The final column reports the average inventory-to-sales ratio in each industry relative
to the pre-1980 median.

Figure A3 pools across the text-based JIT adopters and plots their average inventory-to-sales

ratio, in each year, relative to their respective pre-1980s sector medians. The figure indicates that

on average inventory-to-sales ratios among text-based JIT firms declined relative to their respective

pre-1980 median inventory-to-sales ratios.
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Figure A3: Inventory-to-sales Among Text-Based JIT Adopters
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Note: The figure plots inventory-to-sales ratio of text-based JIT adopters relative to their respective 1970s sector median
inventory-to-sales ratios.
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A.3 JIT and Weather Events

In addition to being more sensitive to aggregate supply conditions, I find that JIT adopters appear

to be more sensitive to weather events faced by their suppliers. I examine this by merging my data

with county-level weather events from NOAA using the Compustat Segment Files and links from

Barrot and Sauvagnat (2016). I then estimate the following regression:

yist “ ψ1JITit´1 ` ψ2WeatherEventst ` ψ3

“

JITit´1 ˆ WeatherEventst
‰

` X1
istβ ` FE ` ωist. (1)

I consider two ways of defining the “WeatherEvent” regressor: (i) as an indicator for a weather

event occurring in the zip code where supplier s is headquartered in a given year and (ii) as the

dollar value of property damage caused by the weather event. I collect information on county-

level weather events from NOAA and link these events to public firm headquarter zip codes via the

aforementioned Barrot and Sauvagnat (2016) links.

Ideally, one would want to link upstream weather events to the zip codes in which suppliers’

production takes place. Compustat data is limited in this respect since once cannot necessarily

assume that production occurs at or near a firm’s headquarters. Nonetheless, weather events may

disrupt other relevant operations which might take place at a firm’s headquarters such as logistics.

Overall, I interpret this data limitation as a form of measurement error which likely biases my

estimates toward zero.

Table A3 provides four sets of results which summarize the estimated sales response to supplier

weather events. The first two columns report the effect of a weather event on sales when specifying

the weather event indicator variable. The final two columns instead report the property damage

with respect to weather events. The point estimates on the interaction between a supplier weather

event and a JIT customer are negative across all specifications and are statistically significant when

controlling for supplier-by-year fixed effects. The latter estimates, reported in columns (2) and

(4), control for upstream time-variation which includes year-specific supplier characteristics such

as age and size, as well as other unobserved shocks that suppliers face in a given year. Given the
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Table A3: JIT Adoption and Weather Events

(1) (2) (3) (4)

Weather event indicator -0.003
(0.036)

Weather event indicator ˆ JIT -0.007 -0.195***
(0.038) (0.069)

Property damage -0.0002
(0.002)

Property damage ˆ JIT -0.0003 -0.010***
(0.002) (0.003)

Fixed effects Firm, Supplier, Year Firm, SupplierˆYear Firm, Supplier, Year Firm, SupplierˆYear
Firms 196 68 196 68
Observations 1885 317 1885 317

Note: The table reports panel regression results based on regression (1). The dependent variable is log sales. The
control variables specified include lagged JIT indicator, lagged log capital stock, and firm age in sample. Standard
errors are double clustered at the customer-supplier level. *** denotes 1% significance, ** denotes 5% significance,
and * denotes 10% significance.

more robust set of controls specified in these regressions, columns (2) and (4) reflect my preferred

specifications.

Through the series of links required to estimate these regressions, the sample size is reduced

considerably.1 Nonetheless, in my preferred specifications, I find that, on average, supplier weather

events in my sample predict an additional 19.5% decline in JIT firm sales. Furthermore, a 1%

increase in the property damage caused by a given weather event is associated with a 1% excess

sales contraction among JIT firms relative to non-JIT firms.

1Building this sample requires linking weather events to firm (supplier) headquarters in Compustat, then linking
these suppliers to their customers (through the Segment files), and finally linking the customers to their JIT adoption
status.
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Appendix B Model

In this section, I first provide details on how the final goods firm problem is reduced from a choice

over inventory, s1 and labor, n, to only a choice over inventory. Second, I report the expression for

the price of the intermediate good, q. Finally, I detail the model’s numerical solution.

B.1 Reducing the Final Goods Firm Problem to a Choice Over Inventories

Final goods firms choose s1 and n to maximize their value in the production stage. We can optimize

out the static labor decision. The firm’s payoff in the current period solves,

max
s1Pr0,ss,n

znθnps ´ s1
q
θm ´ cms

1.

Solving for labor, n, we obtain,

n “

„

θn
w
zps ´ s1

q
θm

ȷ
1

1´θn

.

Substituting this into the maximization problem, we obtain

max
s1

p1 ´ θnq

„

z

ˆ

θn
w

˙θn

ps ´ s1
q
θm

ȷ
1

1´θn

´ cms
1,

or, equivalently,

max
s1

p1 ´ θnqypz, s, s1
q ´ cms

1.

B.2 Intermediate Goods Price

The intermediate goods firm problem is:

max
K,L

qKαL1´α
´ RK ´ wL.
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The solution to this problem yields the following closed-form expression for the price of the

intermediate good,

q “

ˆ

1 ` r

α

˙αˆ

w

1 ´ α

˙1´α

.

B.3 Numerical Solution

The model is solved using methods that are standard in the heterogeneous firms literature. The

exogenous productivity process is discretized according to Tauchen (1986) which allows me to

express the AR(1) process for log firm productivity as a Markov process. I select Nz “ 11 grid

points for idiosyncratic productivity and Ns “ 200 grid points for the endogenous inventory state.

Considering the binary adoption state, this implies that the discretized model has 4,400 grid points.

I can simplify the model by defining p ” U1pC,Hq “ 1
C

and reformulating the final goods

firms’ problem as the maximization of dividends weighted by marginal utility price, p. In doing

so, firms weight current profits by p and discount expected future earnings by β (eliminating the

time-varying discount factor, Λt`1). Defining the value function vA “ pV A, the firm’s reformulated

problem is,

Stage 1: Adoption Decision

vApz, s, aq “ max

"

´ pwcpaq `

ż

vOpz, s, 1, ξqdF pξAq,

ż

vOpz, s, 0, ξqdF pξNAq

*

, (2)

where

cpaq “

$

’

’

&

’

’

%

cs if no JIT (a “ 0)

cf if JIT (a “ 1),

Stage 2: Order Decision

vOpz, s, a, ξq “ max

"

´ pwξ ` v˚
pz, s, aq, vP pz, s, aq

*

, (3)
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where the value of placing an order is

v˚
pz, s, aq “ max

s˚ěs

„

´ pqps˚
´ sq ` vP pz, s˚, aq

ȷ

, (4)

and vP pz, s, aq is defined below. The firm’s order problem delivers a threshold rule. In particular,

a firm places an order if and only if the order cost draw is lower than a threshold order cost: ξ ă

ξ˚pz, s, aq where

ξ˚
pz, s, aq “ min

`

max
`

ξ, rξpz, s, aq
˘

, ξ
˘

, (5)

and

rξpz, s, aq “
v˚pz, s, aq ´ vP pz, s, aq

pw
. (6)

Stage 3: Production Decision

rs “

$

’

’

&

’

’

%

s˚
`

z, s, a1pz, s, aq
˘

if order placed

s if no order placed.

In the production stage, the firm selects labor, npz, rs, s1, aq, and materials, prs ´ s1q, to maximize

profits. Its value function in the production stage is:

vP pz, rs, aq “ max
s1Pr0,rss

p

„

znpz, rs, s1, aq
θnprs´s1

q
θm ´wnpz, rs, s1, aq´cms

1

ȷ

`βE
“

vApz1, s1, a1
q
‰

. (7)

I solve for the policy functions via value function iteration which is accelerated by the use of

the MacQueen-Porteus error bounds (MacQueen, 1966; Porteus, 1971). This acceleration method

makes use of the contraction mapping theorem to obtain bounds that produce a better update of

the value function. The ergodic distribution of firms is obtained via nonstochastic simulation as in

Young (2010).

I solve the model by initiating a guess for p, p0. Using the household and intermediate goods

producer’s optimality conditions, I obtain the implied wage and intermediate goods price, w0 and

q0, given the guess p0. From here, I solve the firm’s problem via value function iteration and
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then obtain the ergodic distribution via nonstochastic simulation. Using the policies and ergodic

distribution, I compute aggregates and the associated market clearing error from the household’s

optimality condition. I update the price based on this error using bisection.

For the unexpected shock exercises, I implement a standard shooting algorithm used to model

deterministic dynamics. I fix the duration of the transition to a predetermined length T so that the

model reaches steady state at T`1. I then solve the final goods firms’ problem backwards, obtaining

a set of time-indexed policy functions. Using these optimal decisions, I push the distribution of final

goods firms forward beginning in the steady state. With the time-indexed policies and weights in

hand, I compute aggregates at each point in time and iterate on prices until the final goods market

clears in each period, 1
pt

“ Ct.
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Appendix C Estimation

In this section, I detail the estimation of the model and provide additional results relating to identi-

fication.

C.1 Simulated Method of Moments

The parameter vector to be estimated is θ “
`

ρz σz ξNA ξA cs cf cm
˘1. Estimating θ requires

making a guess, θ0, solving and simulating the model, and computing the different moments. I

collect the targeted empirical moments in a stacked vectormpXq which comes from my Compustat

sample. I next stack the model-based moments, which depend on θ, in the vector mpθq. Finally, I

search the parameter space to find the vector pθ that minimizes the following objective,

min
θ

`

mpθq ´ mpXq
˘1
W

`

mpθq ´ mpXq
˘

,

where W is the optimal weighting matrix, defined as the inverse of the covariance matrix of the

moments. I compute the covariance matrix, clustering by firm following Hansen and Lee (2019).

I estimate the parameter vector via particle swarm optimization, a standard stochastic global opti-

mization solver.

The limiting distribution of the estimated parameter vector pθ is,

?
Nppθ ´ θq

d
Ñ Np0,Σq,

where

Σ “

ˆ

1 `
1

S

˙„ˆ

Bmpθq

Bθ

˙1

W

ˆ

Bmpθq

Bθ

˙ȷ´1

,

and S is the ratio of the number of observations in the simulated data to the number of observations

in the sample.2 I obtain the standard errors of the parameters fromΣ, where I compute the Jacobian,
Bmpθq

Bθ
, via numerical differentiation.

2S is set to be approximately 6.5.
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Given the lumpiness in ordering and inventories induced by the fixed ordering costs, the het-

erogeneous producers in my model are best characterized as establishments. Accordingly, when

matching the model moments to the data, a simulated firm is assumed to consist of ten establish-

ments. I classify a simulated firm as JIT according to my empirical definition of JIT, using the

pre-1980 average inventory-to-sales ratio across all manufacturing sectors (approximately 0.13).

C.2 Identification

While the targeted moments jointly determine the parameters to be estimated, there are nonethe-

less moments that are especially important for pinning down certain parameters. I discuss their

informativeness in turn.

Idiosyncratic productivity persistence mostly informs the covariance between log inventory and

log sales. Moreover, the dispersion of idiosyncratic productivity shocks mostly affects variances.

The fixed order costs are strongly related to the mean inventory-to-sales ratios. An increase in

the upper bound of fixed order costs for non-JIT adopters leads to an increase in inventory-to-sales

for non-JIT producers as these firms stock more inventories in order to incur the higher fixed cost

less frequently. Similarly, an increase in the fixed order cost upper bound for JIT firms leads to an

increase in the inventory-to-sales ratio for JIT firms.

An increase in the sunk cost of adoption leads to a decrease in the share of JIT adopters. More-

over, an increase in the continuation cost of adoption, causes the share of firms switching out of JIT

to rise. Finally, the storage cost also affects the distribution of inventory-to-sales ratios. A higher

storage cost raises the marginal cost of carrying inventories across time, and therefore reduces av-

erage inventory-to-sales ratios across JIT and non-JIT firms alike.

The ten moments jointly determine the seven parameters that reside in vector θ. Figure C1

reports the monotone relationships between selected moments and parameters. Figure C2 reports

the sensitivity of each of the seven parameters to changes in each of the moments. These results
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Figure C1: Monotonic Relationships

Note: The figure plots the changes in selected moments to changes in the parameters, in percent relative to the moment
at the estimated parameter values.

come from an implementation of Andrews et al. (2017). The sensitivity of pθ to mpθq is

Λ “ ´

„ˆ

Bmpθq

Bθ

˙1

W

ˆ

Bmpθq

Bθ

˙ȷ´1ˆ

Bmpθq

Bθ

˙1

W.

I then transform this matrix so that the coefficients reflect the effect on each parameter of a one

standard deviation change in the respective moments.
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Figure C2: Sensitivity
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Note: The figure plots sensitivity estimates as in Andrews et al. (2017). These estimates describe the changes in each
of the seven parameters to a one standard deviation increase in each moment.
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Appendix D Robustness

In this section, I explore the sensitivity of the baseline economy to a fixed order cost shock based

on alternative parameterizations, shock sizes, assumptions on the fixed order cost distribution, and

under aggregate uncertainty.

D.1 Sensitivity Analysis

I start by analyzing the robustness of the unanticipated shock exercise in the main text to different

parameterizations. I separately vary each estimated parameter by 5% in either direction, solve

for the steady state of the JIT and no JIT economies, and solve for the transition path amid an

unanticipated increase in fixed order costs. Figure D1 plots the total output contraction along the

transition in each economy. Across all specifications, output contracts more sharply in the JIT

economy than in the counterfactual, as shown by the dots residing below the 45-degree line.
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Figure D1: JIT Vulnerabilities with Alternative Parameters

Note: The figure plots the GDP contraction in response to an unanticipated fixed order cost shock in the baseline
economy (vertical axis) against the GDP contraction in the counterfactual model (horizontal axis) for a variety of
different parameter specifications. The black dot denotes the baseline parameterization estimated in the main text, and
the hollow dots represent the alternative parameterizations which reflect 5% deviations in each estimated parameter
value in either direction.
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D.2 Shock Size

In this section, I consider alternative shock sizes for the unanticipated increase in fixed ordering

costs. Figure D2 plots the output dynamics when the shock is one half of the size specified in the

main text. Figure D3 plots the output dynamics when the shock is twice the size specified in the

main text.

Figure D2: Output Response to Smaller Fixed Order Cost Shock

Note: The figure plots the output response to a fixed order cost shock that is half the size of the shock in Figure 4 of
the text. The persistence of the shock is set to 0.50.
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Figure D3: Output Response to Larger Fixed Order Cost Shock

Note: The figure plots the output response to a fixed order cost shock that is twice the size of the shock in Figure 4 of
the text. The persistence of the shock is set to 0.50.
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D.3 Alternative Order Cost Distribution

In this section, I repeat my analysis under an alternative fixed ordering cost distribution. I assume

that fixed order costs follow a four-parameter Beta distribution, Bpα, β, ξ, ξq, where α and β are

the shape parameters of the Beta distribution, and ξ and ξ are the lower and upper support. The

probability density function is:

fpξq “
pξ ´ ξqα´1pξ ´ ξqβ´1

pξ ´ ξqα`β´1Bpα, βq
,

where Bpα, βq is the Beta function, Bpα, βq “
ş1

0
tα´1p1 ´ tqβ´1dt.

I consider a version of the model with a Beta(3,3,ξ, ξ) order cost distribution, meaning that order

costs are symmetrically distributed. Note that the support, rξ, ξs differs for JIT and non-JIT firms,

as in the uniform order cost case. Furthermore, as in the case of uniform order costs, I fix ξ “ 0 in

the steady state.

First, I find that the economy-wide equilibrium stock of inventories is lower under Beta(3,3)

distributed order costs, consistent with the notion that uniformly distributed order costs generate a

relatively stronger precautionary inventory holding motive. The first row of Table D1 reports the

aggregate inventory stock in Beta order cost model relative to the baseline model. The second row

reports the relative output in the JIT model compared to the counterfactual model prior to the shock.

Table D1: Aggregate Outcomes Under Beta-Distributed Order Cost

Uniform Beta(3,3)

Steady state inventory stock
relative to uniform (%) – -23.88
Output relative to no JIT
counterfactual before shock (%) 15.28 22.17

Note: The first row of the table reports the steady state inventory stock relative to the baseline assumption of uniformly
distributed fixed order costs. The second row of the table reports the output prior to the shock in the JIT economy
relative to output prior to the shock in the analogous no-JIT economy.

Figures D4 and D5 plot the transition dynamics under uniform and Beta(3,3) distributed fixed
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order costs. Overall, the results are quite similar across order cost specifications. The JIT economy

under Beta(3,3) experiences a slightly larger output contraction amid a shock to fixed order costs

relative to the version with uniformly distributed fixed order costs.

Figure D4: Output Response with Uniformly Distributed Order Costs

Note: The left panel plots the assumed pdf of fixed ordering cost in the model. The right panel plots the output response
to a fixed order cost shock, as in Figure 4 of the main text.

22



Figure D5: Output Response with Beta(3,3) Distributed Order Costs

Note: The left panel plots the assumed pdf of fixed ordering costs in the model. The right panel plots the output
response to a fixed order cost shock. The shock is equal in size and persistence to the one used in Figure 4 of the main
text.
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D.4 Incorporating Aggregate Uncertainty

The supply disruption that I model in the main text takes the form of an unanticipated fixed order

cost shock. After the realization of the shock, agents have perfect foresight about the transition back

to steady state. In this section, I show that my findings generally extend to an environment in which

agents form expectations over an aggregate shock to fixed order costs.

Aggregate Uncertainty About Fixed Order Costs

I assume that the support of fixed order costs is time varying,

ξ
t

“ ξ ` xt and ξt “ ξ ` xt.

In addition, I assume that xt is a two-dimensional state, xt “ r0.0 0.054s, where xt “ 0.0 reflects

normal times and xt “ 0.054 reflects a supply disruption, which is calibrated to be the same as in

the unanticipated shock exercise. I set the transition matrix to be,

Πpx1
|xq “

»

—

–

0.95 0.05

0.25 0.75

fi

ffi

fl

,

which implies that supply disruptions are infrequent and that a transition from a supply disruption

back to normal times is relatively quick. The aggregate state space is now comprised of x and µ,

the distribution of firms, and we can denote it as Ψ “ px, µq.

Solving the JIT model with aggregate shocks requires tracking prices and the distribution of

firms, an infinite-dimensional object, across time. Following Krusell and Smith (1998), I solve the

model by assuming that agents exhibit bounded rationality and use aggregate material input usage

to track the distribution across time. I define a log linear mapping between prices and aggregate
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materials,

log xM 1
pxq “ βM

0 pxq ` βM
1 pxq logMpxq

log pppxq “ βp
0pxq ` βp

1pxq logMpxq.

Below I summarize the steps taken to solve the model:

1. Simulate tXtu
T
t“1 for some large T and guess an initial set of coefficients: βMp0q

0 , βMp0q

1 , βpp0q

0 ,

and βpp0q

1 .

2. For each iteration i:

(a) Solve the final goods firm problem on a grid based on pppiq and xM
1piq, where pppiq and

xM
1piq are obtained using the coefficients βMpiq

0 , β
Mpiq
1 , β

ppiq
0 , β

ppiq
1 .

(b) Simulate the model, using tXtu
T
t“1, and obtain a time series tpt,Mtu

T
t“1, where pt re-

flects the equilibrium price which is obtained by clearing markets in each period.

(c) Based on the simulated data, update the forecast rules via OLS to obtain βMpi`1q

0 , βMpi`1q

1 ,

β
ppi`1q

0 , and βppi`1q

1 . If the coefficients are sufficiently close, up to a pre-specified toler-

ance, then exit. Otherwise, update each coefficient as a convex combination of the old

guess and the new estimate. Set i “ i ` 1 and return to (a).

I specify a grid of dimensionNz ˆNs ˆNa ˆNX ˆNM “ 5ˆ120ˆ2ˆ2ˆ10, and I simulate the

model for 5,500 periods, discarding the first 500 periods to reduce the influence of initial conditions.

I specify a tolerance of 10´3 for convergence of the forecasting rules.

Solution and Accuracy Statistics

The converged forecast rules are reported in Table D2. Table D3 reports accuracy statistics for each

model based on static and dynamic forecasts for aggregate materials and prices. The first row of the

table reports the mean percentage difference between realized simulated data and its corresponding

25



dynamic forecast based on the forecasting rules (Den Haan, 2010). The bottom two rows report the

R2 of each forecast rule based on static forecasts.

Table D2: Forecasting Rules

Baseline Counterfactual
βM
0 px “ x1q -1.536 -2.759

βM
0 px “ x2q -1.806 -2.695

βM
1 px “ x1q 0.397 -0.041

βM
1 px “ x2q 0.297 -0.010

βp
0px “ x1q 1.219 2.165

βp
0px “ x2q 1.578 2.210

βp
1px “ x1q -0.373 -0.044

βp
1px “ x2q -0.240 -0.031

Note: The table reports the forecasting rules.
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Table D3: Accuracy Statistics

Baseline Counterfactual

M p M p
Mean percentage difference 0.633 0.378 0.437 0.009
Forecast regression R2

x “ x1 1.000 1.000 1.000 1.000
x “ x2 1.000 1.000 1.000 1.000

Note: The table reports accuracy statistics.
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Impulse Response to a Fixed Order Cost Shock

To compute the impulse response to a shock to xt, I follow the Koop et al. (1996) approach and

compute the generalized impulse response. More specifically, I simulate 5,000 economies for 50

periods. I do this twice: once for a set of simulations that does not impose the shock, and again for

simulations which do impose the shock. I then compute the impulse response for GDP as,3

GDPIRF
t “

1

5000

5000
ÿ

j“1

„

log

ˆ GDPshock
jt

GDPno shock
jt

˙

ˆ 100

ȷ

.

Figure D6 plots the impulse response in the baseline and counterfactual economies. The top

left panel shows that output initially increases in the baseline economy relative to the counterfactual

economy, but subsequently contracts further and recovers more gradually. The top right panel plots

sales, which contracts more in the baseline model relative to the counterfactual without an initial

relative increase.

The relative increase in output on impact is therefore due to a relative increase in inventory

investment on impact which is ultimately attributed to the behavior of aggregate orders in the model.

Under aggregate uncertainty, firms recognize the likelihood of transiting to the high fixed order

cost state and optimally hold precautionary stocks of inventory in response. This, in turn, renders

ordering probabilities less sensitive on impact to a fixed order cost shock.4 The aggregate ordering

probability declines by about 1.7% on impact but then falls further as inventories are depleted,

reaching a trough of -2.6% one period after the shock. Meanwhile, order sizes increase on impact.

Taken together, this yields a relative increase in aggregate orders in the period in which the aggregate

shock is realized.

After the period in which the shock occurs, however, output declines by more in the baseline

economy than in the counterfactual economy as inventory buffers are rundown and aggregate orders

decline. Therefore, the findings documented in this section are broadly consistent those obtained
3See Koop et al. (1996) for more details. Terry (2017) also provides a detailed summary of this approach.
4One way to see this by noting that the slope of ordering probabilities in panel (a) of Figure 3 is flatter at higher

levels of inventory. Though ordering probabilities still decline more in the baseline economy, they do so less than in
the unanticipated shock exercise.

28



Figure D6: Output Response to Fixed Order Cost Shock

Note: The figure depicts the response of output to a positive shock to fixed order costs, averaged over 5,000 simulated
economies.
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from the unanticipated shock exercise and indicate that the vulnerability of JIT producers to supply

disruptions is also present in an environment that features aggregate uncertainty, with the caveat

that the extent of this vulnerability is shaped in part by the size of the shock and the degree to which

firms hold precautionary stocks of inventories.5

5The initial increase in aggregate orders may be tempered, or potentially even disappear, in an environment with
sufficiently large capital adjustment costs, as capital is an input in the production of orders and such a friction would
dampen the investment response to the shock. I abstract away from capital adjustment costs in my model for simplicity.
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