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Abstract

Macroeconomic expectations among professional forecasters exhibit a puzzling pat-
tern. Whereas individual forecasts robustly exhibit overreactions at the quarterly fre-
quency, this is not the case at the annual frequency. Consistent with this finding,
we provide evidence that forecasters partially offset their revisions within the calen-
dar year. We explain these facts with a model of annual anchoring in which quarterly
predictions must be consistent with annual predictions. We estimate our model to fit
survey expectations and show that it provides a unified explanation for our empiri-
cal facts. Furthermore, our model yields frequency-specific estimates of information
frictions which imply a larger role for inattention at the annual frequency.
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1 Introduction

In many situations, forecasts are made for two frequencies at the same time. For example,
households might simultaneously budget both monthly and annual expenditures, managers
at firms sometimes provide fiscal quarter and fiscal year guidance, and professional forecast-
ers often accompany their annual predictions with a quarter-by-quarter path. Whenever
forecasts are simultaneously made for multiple frequencies, a question of aggregation arises
since, in principle, these forecasts must be consistent with one another. In this paper, we
examine quarterly and annual predictions issued by professional forecasters and study the
role that quarterly-to-annual consistency plays in explaining error predictability and other
puzzling features of survey expectations.

Our focus on the link between quarterly and annual survey expectations is motivated
by patterns that we uncover in the data. While there is robust evidence that individual
forecasts exhibit overreaction at the quarterly frequency (Bordalo et al., 2020; Nordhaus,
1987; Kohlhas and Walther, 2021), this is not the case at the annual frequency. We document
evidence for this fact using data from the U.S. Survey of Professional Forecasters (SPF) as
well as other surveys and argue that, in a setting in which quarterly-to-annual consistency
holds, these empirical patterns can only arise if forecasters reshuffle their predictions within
the calendar year. For instance, a forecaster may offset an upward revision to her current-
quarter prediction with a downgrade in her three-quarter ahead prediction. Traditional
theories of expectation formation do not account for such reshuffling.

We provide further evidence consistent with our hypothesis by showing that forecasters
partially offset their quarterly forecast revisions within the calendar year. In addition, we
show that current-year forecasts underreact to past quarterly forecast errors. This implies
that, as the calendar year progresses and quarterly realizations of the macroeconomic variable
of interest are realized, forecasters update their corresponding annual forecasts only partially.
Less than full pass through of quarterly realizations to the current-year forecast can be
explained by quarterly revision offsetting. Finally, we provide evidence linking quarterly
offsetting to quarterly overreactions by showing that quarterly overreactions appear to be
concentrated among forecasters who engage in quarterly revision offsetting.

We offer two intuitive explanations for the patterns observed in the data which motivate
our subsequent model. First, agents may have separate frequency-specific models that need
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to be reconciled. One way of doing this is to use the lower frequency prediction as an anchor
and adjust the higher frequency forecasts to achieve consistency. Assuming that agents are
more informed about the short run, they would optimally revise the near term based on new
information and offset these updates further out along their projected path.

Second, forecasters may publicly commit to their lower frequency forecasts. Examples of
such commitment can be observed when professional forecasters attach narratives to their
lower frequency forecasts, when managers issue longer-run guidance, and when individuals
plan major life events. In such cases, revising the lower frequency forecast may be costly.
As a result, agents might engage in few revisions of lower frequency predictions, and instead
reshuffle their higher frequency forecasts as they bring in new information.1 Though we
are unable to discern between these two explanations in the data, both can account for the
observed quarterly overreactions documented in the literature.

To explain these facts, we build and estimate a model of multi-frequency forecasting.
Our model is a hybrid sticky-noisy information model as in Andrade and Le Bihan (2013)
with heterogeneous updating rates by frequency. Forecasters issue high and low frequency
forecasts based on information gleaned from a contemporaneous high frequency private signal
and the realization of the high frequency macroeconomic variable (i.e., a lagged public signal).
High and low frequency updating are separate activities governed by distinct Calvo-like
probabilities. Furthermore, forecasters are subject to a consistency constraint which requires
a forecaster’s sequence of high frequency predictions to aggregate up to her low frequency
prediction.2 Two key assumptions are responsible for generating offsetting and overreactions:
consistency (i.e., high frequency forecasts aggregate up to the low frequency forecast) and
low frequency inattention. Under these two assumptions, an upward revision in the near
term must be offset by a downward revision later along the forecaster’s projected path, as
observed in the data.

1We talked to a number of professional forecasters contributing to the surveys used here and these two
explanations are consistent with how they devise their forecasts. There is thus anecdotal evidence of this
updating behavior in the professional forecasting context.

2The SPF requires forecasters to issue consistent predictions, a feature of the data which we verify in
Appendix A.1. For real GDP growth, our primary variable of interest, quarterly (high frequency) forecasts in
the data correspond to the quarter over quarter annualized growth rate, and annual (low frequency) forecasts
correspond to the percentage change of the average quarterly level this year relative to the average quarterly
level last year. Appendix A.3 and A.4 provide further details of the variable definitions.
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Individual-level high frequency overreactions arise in our model because agents introduce
past high frequency errors into their predictions through the consistency constraint.3 For
instance, when a forecaster updates her quarterly prediction but not her annual prediction,
then any upward revision in the near term must be offset by downward revisions further out
to remain consistent with the unchanged annual forecast. This in turn generates error and
revision predictability.4 Low frequency inattention is therefore a key ingredient which allows
our model to generate quarterly overreactions.

We specify our model to fit quarterly (high frequency) and annual (low frequency) fore-
casts and estimate its parameters via the simulated method of moments (SMM) by target-
ing micro moments in the SPF. Our estimated model successfully fits both targeted and
non-targeted moments. Overall, our estimates imply that annual anchoring can explain a
meaningful share of observed overreactions across a range of measures. The estimated model
can also generate empirically relevant degrees of underreaction in consensus forecasts.

Finally, we use the model to study information frictions. Our estimates reveal that infor-
mation rigidities vary across frequencies and are more pervasive at the annual level. When
averaging across the two frequencies, we obtain information frictions that are quantitatively
similar to estimates previously documented in the literature (Coibion and Gorodnichenko,
2015; Ryngaert, 2017). Through a decomposition exercise, we find that noisy information is
the dominant source of information frictions at the quarterly frequency while sticky infor-
mation is the main driver of information frictions at the annual frequency.

Overall, our empirical and quantitative results imply that the multi-frequency nature of
forecasting can explain some of the puzzling features of survey expectations. We develop a
rational theory linking high and low frequency forecasts which can provide a unified explana-
tion for overreaction, underreaction, and offsetting. While high and low frequency forecasts
are connected through a consistency constraint, we acknowledge consistency itself can be
achieved in rational or non-rational ways.

3Similar to the apparent biases in Bürgi (2017), overreactions in our model arise among rational forecast-
ers.

4Our model assumes that forecasters are subject to a sticky information friction which implies that forecast
updates are time dependent. One could alternatively model inattention as state dependent by characterizing
a trade-off between the accuracy of the forecast and the cost of updating or processing information. We
focus on time dependent updating for tractability and show that our estimated model can successfully match
important targeted and non-targeted moments in the survey data.

4



A longstanding literature on expectation formation has studied forecast error predictabil-
ity (Nordhaus, 1987; Clements, 1997; Pesaran and Weale, 2006; Patton and Timmermann,
2012; Coibion and Gorodnichenko, 2015). Recent evidence suggests that, at the individual
level, forecasters overreact to news (Bordalo et al., 2020; Broer and Kohlhas, 2022; Bürgi,
2016). In this paper, we study three measures of overreaction (Bordalo et al., 2020; Nord-
haus and Durlauf, 1984; Kohlhas and Walther, 2021). While we uncover robust evidence of
quarterly overreactions, we do not find such evidence at the annual frequency. Furthermore,
we document novel evidence that forecasters partially offset their revisions, and we show
that this pattern can generate high frequency overreactions.

A separate literature on the real effects of monetary policy pioneered modern theories
of imperfect information in macroeconomics (Lucas, 1972, 1973; Mankiw and Reis, 2002;
Woodford, 2001; Sims, 2003). Relative to full information rational expectations, these theo-
ries are better able to speak to inertia in aggregate responses to shocks (i.e., underreaction).
Andrade and Le Bihan (2013) show that sticky information and noisy information theories
can match micro moments in survey expectations such as inattention or disagreement, but
not both at the same time. We build on Andrade and Le Bihan (2013) by devising a multi-
frequency hybrid sticky-noisy information model. We find that by modeling heterogeneity
in inattention across frequencies, we are able to jointly match realistic degrees of inattention
and disagreement.

Following on these seminal sticky and noisy information models, which can only generate
aggregate underreaction, a strand of the literature has proposed novel theories to explain the
aforementioned evidence of overreactions (Afrouzi et al., 2021; Bordalo et al., 2020; Broer and
Kohlhas, 2022; Kohlhas and Walther, 2021; Farmer et al., 2022). We offer a new explanation
by building a model in which overreactions emanate from consistency constraints that arise
under multi-frequency forecasting. Our model can jointly explain offsetting, overreactions,
and underreactions.

The rest of the paper is organized as follows. Section 2 documents empirical evidence
relating to overreactions and offsetting. Section 3 presents the offsetting revisions model.
Section 4 discusses the estimation strategy and results. Section 5 quantifies the extent
to which low-frequency anchoring can explain higher-frequency overreactions. Section 6
discusses the implications for estimates of information frictions. Section 7 concludes.
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2 Overreaction at Quarterly and Annual Frequencies

2.1 Data

The data that we use for our main empirical results come from the SPF, a quarterly survey
managed by the Federal Reserve Bank of Philadelphia. The survey began in 1968Q4 and
collects quarterly and annual predictions across a range of macroeconomic variables over
many horizons. We begin our sample in 1981Q3 when the SPF started to collect current-
year forecasts and required them to be consistent with the associated quarterly forecasts.5

In this sense, the consistency constraint that we impose in our model is directly motivated
by the data.

While our main results focus on real GDP growth predictions, we examine SPF forecasts
for other macroeconomic variables as well as real GDP growth forecasts from the Bloomberg
(BBG) and Wall Street Journal (WSJ) surveys of forecasters in Appendix A.5. We estimate
our model for these other variables and surveys, and include them in Table 7.

2.2 Quarterly Overreaction

Professional forecasts are known to exhibit overreactions (Bordalo et al., 2020; Kohlhas
and Walther, 2021; Broer and Kohlhas, 2022; Angeletos et al., 2020; Kucinskas and Peters,
2022). Here, we review the robust evidence of overreaction in quarterly macroeconomic
expectations through error and revision predictability regressions and then show that there
is no such evidence of overreaction at the annual frequency.

Let F i
t (xt+h) denote forecaster i’s forecast devised at time t for macroeconomic variable

x at time t + h. Using this notation, we define three regression equations. We begin by
estimating an errors-on-revisions regression:

xt+h − F i
t (xt+h) = β0,h + β1,h

[
F i
t (xt+h)− F i

t−1(xt+h)
]

+ εit+h, (1)

a revision autocorrelation regression:

F i
t (xt+h)− F i

t−1(xt+h) = γ0,h + γ1,h
[
F i
t−1(xt+h)− F i

t−2(xt+h)
]

+ εit+h, (2)

5To abstract away from the COVID-19 pandemic, our sample ends in 2019Q4.
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Table 1: Overreaction among Individual Forecasters

Current quarter One quarter ahead Two quarters ahead Year-over-year

(1) (2) (3) (4) (5) (6) (7) (8)
Error Revision Error Revision Error Revision Error Error

Revision -0.266*** -0.145** -0.334*** -0.236*
(0.059) (0.073) (0.066) (0.137)

Previous revision -0.131** -0.302*** -0.424***
(0.057) (0.055) (0.050)

Realization -0.134*
(0.070)

Forecasters 162 153 153 153 152 152 148 150
Observations 4203 3555 3576 3542 3480 3446 3107 3118

Note: The table reports panel regression results from SPF forecasts of real GDP growth based on regressions
(1), (2), and (3). Standard errors clustered by forecaster and time are reported in parentheses. *** denotes
1% significance, ** denotes 5% significance, and * denotes 10% significance.

and an errors-on-outcome regression:

xt+h − F i
t (xt+h) = α0,h + α1,hxt + ηit+h. (3)

Regressions (1) and (2) were first introduced as tests of weak efficiency in Nordhaus and
Durlauf (1984) and Nordhaus (1987). The errors-on-revisions regression (1), which is widely
employed in the survey expectations literature (Bordalo et al., 2020; Bürgi, 2016), relates
ex-post errors to ex-ante revisions. If β1,h < 0, then an upward revision predicts a more
negative subsequent forecast error, implying that forecasters overreact to new information
when updating their predictions.

Equation (2) does not rely on realized macroeconomic data and instead relates fixed event
revisions across time. Here, we are interested in the coefficient in front of the lagged revision,
γh. Rational expectations implies that forecasters use their information efficiently so that
γh = 0. In other words, revisions are not serially correlated since yesterday’s information
set is a subset of today’s information set. A negative value of γh indicates that an upward
forecast revision today predicts a downward forecast revision tomorrow.

Finally, the errors-on-outcomes regression (3), studied in Kohlhas and Walther (2021),
examines another form of error predictability. This regression differs from (2) in a subtle but
important way. Here, if α1,h < 0, then forecasters overreact to public news relating to the
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macroeconomic aggregate of interest. The results from the errors-on-revisions regression, on
the other hand, do not make a distinction between different types of news.

Table 1 reports all of the regression results. Across horizons, we find that a one percent-
age point upward forecast revision predicts a roughly -0.15 to -0.33 percentage point more
negative subsequent forecast error. These estimates, reported in columns (1), (3), and (5),
are in line with those in Bordalo et al. (2020) and Bürgi (2016). Furthermore, in columns
(2), (4), and (6), we find that forecasters overrevise their predictions. Forecasters tend to
overrevise more strongly at the one- and two-quarter ahead horizons, with point estimates
hovering around -0.30 to -0.42.

The final two columns reproduce existing evidence of overreaction previously documented
in the literature. Column (7) reports the errors-on-revisions regression specified in Bordalo
et al. (2020) while the final column reports the errors-on-outcomes regression estimated in
Kohlhas and Walther (2021).

2.3 No Annual Overreaction

To further examine whether there is evidence of annual anchoring in the data, we next
estimate these regressions at the annual frequency. If forecasters reshuffle their quarterly
predictions due to annual anchoring, then overreactions should be relatively stronger at
the quarterly frequency than the annual frequency. Hence, the data would be consistent
with annual anchoring if the annual analogs to (1), (2), and (3) yield weaker evidence of
overreaction.

There are some limitations to estimating the overreaction regressions using annual fore-
casts. First, the mapping between quarterly and annual coefficients is non-linear, rendering
quantitative comparisons challenging. We therefore focus on comparing the signs and sta-
tistical significance of the quarterly and annual coefficients. Second, we lose the rich term
structure of forecasts when looking at reported annual predictions since respondents were
not asked to issue longer-run annual forecasts for real GDP until 2009Q2. For this reason,
we are unable to estimate regression (2). With these caveats in mind, we estimate only
regressions (1) and (3).6 The results are reported in Table 2.

6For Q2, Q3, and Q4, we define the revision of the annual forecast as the change in the forecast of
current-year growth relative to the forecast of current-year growth recorded in the previous quarter. For Q1,
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Table 2: No Annual Overreaction among Individual Forecasters

(1) (2)
Annual error Annual error

Annual revision -0.023
(0.059)

Annual realization -0.026
(0.023)

Forecasters 137 137
Observations 3835 4682

Note: The table reports panel regression results from SPF forecasts of real GDP growth based on regressions
(1) and (3). Standard errors clustered by forecaster and time are reported in parentheses. *** denotes 1%
significance, ** denotes 5% significance, and * denotes 10% significance.

Column 1 of Table 2 reports the annual version of regressions (1) for real GDP growth
and column 2 the annual version of regression (3). The point estimates in both cases are
statistically insignificant, leading to a failure to reject the null hypothesis of full information
rational expectations, consistent with annual anchoring.

2.4 Additional Evidence of Quarterly but not Annual Overreaction

We next document additional facts consistent with the notion that overreaction is present
at the quarterly frequency but not at the annual frequency.

Underreaction of Annual Forecast to Quarterly News

Our focus on annual forecasts allows for previous quarterly realizations of the macroeco-
nomic variable to play an important role in updating behavior. As quarterly realizations
are observed with a lag throughout the year, these quarterly outcomes enter into the an-
nual outcome arithmetically. The optimal forecast should fully incorporate past quarterly
realizations such that the annual forecast error is unrelated to these past mistakes.

Empirically, we find that forecasters underreact to past mistakes since the annual forecast

we define the revision of the annual forecast as the change in the current-year forecast of growth relative to
the next-year forecast of growth reported in the fourth quarter of the previous calendar year. See Appendix
A.4 for details.
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Table 3: Underreaction to Realized Quarterly Error

(1) (2)
Annual error Annual error

Realized quarterly error 0.053*** 0.039**
(0.019) (0.019)

Fixed effects None Forecaster
Forecasters 137 137
Observations 3832 3832

Note: The table reports panel regression results from SPF forecasts of real GDP growth based on regres-
sion (4). Standard errors clustered by forecaster and time are reported in parentheses. *** denotes 1%
significance, ** denotes 5% significance, and * denotes 10% significance.

error is positively correlated with past quarterly mistakes. To show this, we project the
annual forecast error on the lagged quarterly forecast error:

xY − F i
Y,Q(xY ) = β0 + β1

[
xY,Q−1 − F i

Y,Q−1(xY,Q−1)
]

+ εiY,Q, (4)

where F i
Y,Q(xY ) denotes forecaster i’s forecast of the annual variable xY devised in year Y

and quarter Q. Similarly, F i
Y,Q−1(xY,Q−1) denotes forecaster i’s prediction of x in the previous

quarter. If forecasters optimally bring the lagged realization of the macroeconomic variable
into their annual forecast, then the annual forecast error should be uncorrelated with the
past quarterly error.

Column 1 of Table 3 reports the estimate of β1 which is positive. This means that when
a forecaster issues a prediction for calendar year growth in Q2 after observing realized GDP
in Q1, the forecaster’s prediction responds less than one-for-one with the prediction error of
Q1 GDP despite the fact that Q1 GDP should be fully incorporated in the annual forecast.
Because the pass through of past quarterly GDP to the annual forecast tends to be less than
one-for-one, this implies either that (i) forecasters do not “bring in” past realizations of the
variable or (ii) forecasters “bring in” past realizations of the variable but offset this later in
their projected annual path.
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Quarterly Offsetting Revisions

Our empirical results thus far suggest that forecasters overreact substantially at the quarterly
frequency but do not at the annual frequency. In addition, forecasters underreact to past
prediction errors. We next show that forecasters partially offset their revisions within the
calendar year.

Exploiting the term structure of forecasts in the SPF, we regress the fourth-quarter
revision on the first-, second-, and third-quarter revisions. We run the following regression:

F i
Y,Q4(xY,Q4)− F i

Y,Q3(xY,Q4) = αQ3

[
F i
Y,Q3(xY,Q3)− F i

Y,Q2(xY,Q3)
]

+ αQ2

[
F i
Y,Q2(xY,Q2)− F i

Y,Q1(xY,Q2)
]

+ αQ1

[
F i
Y,Q1(xY,Q1)− F i

Y−1,Q4(xY,Q1)
]

+ νiQ4,

(5)

where F i
Y Q(xY Q) denotes forecaster i’s forecast for real GDP growth in year Y and quarter

Q.
We construct these calendar year variables as follows. In the first quarter of the year, the

Q4 revision (i.e., the dependent variable) is the three-quarter ahead revision. In the second
quarter of the year, the Q4 revision is the two-quarter ahead revision since the fourth quarter
is now two periods ahead, and so on. Importantly, as the calendar year progresses, values
of real GDP are realized and forecast revisions become past forecast errors. For instance,
the Q1 revision in the first quarter of the year is the current-quarter revision, but when we
enter into the second quarter of the year, Q1 real GDP is known and the forecaster “brings
in” this news so that the Q1 revision becomes the lagged current quarter error.

Columns (1) through (3) of Table 4 report least squares estimates of (5) for real GDP
growth forecasts under different fixed effect specifications. The estimates imply that fore-
casters offset their revisions within the calendar year. In particular, a one percentage point
increase in the first quarter revision implies a 10 to 16 basis point downward revision to the
fourth quarter forecast.

Offsetting calendar year revisions could naturally arise if the aggregate variable of interest
exhibits certain dynamics. To examine this, we estimate a time series version of equation
(5) using real-time real GDP growth and report the results in column (4) of Table 4. Based
on our estimates, we find no evidence of a negative and significant coefficient, leading us
to conclude that offsetting revisions are unlikely to be driven by the dynamics of real GDP
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Table 4: Offsetting Real GDP Revisions Within Calendar Year

(1) (2) (3) (4)
Fourth quarter Fourth quarter Fourth quarter Fourth quarter

revision revision revision growth

Third quarter revision 0.266*** 0.267*** 0.229***
(0.068) (0.064) (0.065)

Second quarter revision 0.060 0.061 0.034
(0.051) (0.057) (0.082)

First quarter revision -0.101** -0.108** -0.161**
(0.050) (0.050) (0.078)

Third quarter growth 0.716**
(0.276)

Second quarter growth 0.109
(0.263)

First quarter growth 0.009
(0.133)

Fixed Effects None Forecaster Forecaster, Time None
Forecasters 162 151 151
Observations 3932 3921 3921 39

Note: The table reports panel regression results from SPF forecasts based on regression (5). Standard errors
for regression results in columns (1) through (3) are clustered by forecaster and time and are reported in
parentheses. Newey-West standard errors are specified for time series regression in column (4). *** denotes
1% significance, ** denotes 5% significance, and * denotes 10% significance.

growth.

Linking Quarterly Offsetting to Quarterly Overreaction

A natural way to determine whether offsetting contributes to overreactions would be to
determine whether forecasters who offset their revisions exhibit stronger overreactions in the
data. We explore this next by running the following regression:

FEi
t+h = β0 + β1FR

i
t+h + β2offsetit + β3

[
FRi

t+h × offsetit
]

+ εit. (6)

Note that regression (6) is a generalization of the error-on-revision regression (1), where FE
denotes the forecast error and FR denotes the forecast revision, for notational convenience.
If offsetting is not important, then we would expect β2 = β3 = 0 and β1 < 0, consistent with
the results in Table 1. The coefficient β3 captures the extent to which offsetting matters for
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overreactions since the effect of a marginal increase in the forecast revision on the forecast
error is now β1 + β3 × offsetit.

We measure offsetting in the data by constructing a forecaster-quarter specific dummy
variable that equals one whenever a forecaster’s sequence of revisions exhibits a sign switch.
We plot the results of the regression for quarterly horizons h = 0, 1, 2, 3 in Figure 1. The
top panel of Figure 1 displays the estimates of the coefficient β1, the middle panel displays
estimates of β2, and the bottom panel displays estimates of β3.

At the current-quarter (CQ) and one-quarter ahead (1Q) horizons, we find that offsetting
does not drive overreactions since β3 is statistically indistinguishable from zero while β1 is
negative. At the two- and three-quarter ahead horizons, however, we find that offsetting
appears to matter for overreactions. Here, we see that overreactions, which are quantified as
β1 + β3, are driven by β3. In other words, overreactions at these horizons are concentrated
among forecasters who offset their revisions.

In general, finding a statistically significant estimate of β3 at any horizon suggests a
role for offsetting in explaining overreactions. In this case, β3 is negative and significant
at the two- and three-quarter ahead horizons, but insignificant at the current-quarter and
one-quarter ahead horizons. Our results are consistent with the notion that forecasters who
reshuffle their predictions based on quarterly-to-annual consistency constraints do so over
longer horizons rather than shorter horizons since they are presumably more informed about
the near term and they would like to remain accurate. We build this intuition into our
model, which we detail in the next section.

3 A Model of Offsetting Revisions

We next present a general model of offsetting revisions. Our model is in the spirit of Andrade
and Le Bihan (2013) with high and low frequency forecasts, each subject to a distinct up-
dating probability. While we ultimately focus on quarterly and annual forecasts, the model
presented here can be flexibly applied to other multi-frequency settings. Derivations of our
results can be found in Appendix B.

After outlining the model, we discuss how high frequency overreactions arise through low
frequency anchoring under a consistency constraint. Finally, we analyze a series of compar-
ative statics in order to examine the ways in which the overreaction coefficients estimated in
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Figure 1: Offsetting Drives Overreactions Over Longer Horizons

The figure plots the point estimate and 90% confidence interval of regression (6). Standard errors are
clustered by forecaster and time. ‘CQ’ denotes current quarter, ‘1Q’ denotes one-quarter ahead, ‘2Q’ denotes
two-quarters ahead, and ‘3Q’ denotes three-quarters ahead.
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the previous section depend on the model parameters.

3.1 Model Setup

The model is populated by forecasters that issue predictions about an exogenous variable
which in part reflects a latent state st, subject to the realizations of noisy signals.7 Forecasters
issue high and low frequency forecasts which they may update at different points in time,
subject to an aggregation constraint that requires the high frequency forecast to aggregate
up to the low frequency forecast in every period.

More formally, forecasters predict the variable xt, which is defined as a function of two
components:

xt = st + et, et ∼ N(0, σ2
e).

The underlying state, st, follows an AR(1) process:8

st = (1− ρ)µ+ ρst−1 + wt, wt ∼ N(0, σ2
w),

with unconditional mean µ, persistence ρ, and variance σ2
w

1−ρ2 . The transitory component, et,
is normally distributed and centered at zero with variance σ2

e . The state is neither observed
by forecasters nor by the econometrician. However, we assume that the parameters governing
the data generating process are known to forecasters.

In the empirical section, we found that forecasters underreact to past high frequency
prediction errors. Since we wish to capture this in our model, we assume that when updat-
ing their predictions, forecasters observe the previous realization of the variable, xt−1. In
addition, we assume that forecasters observe a contemporaneous private signal:

yit = st + vit, vit
i.i.d.∼ N(0, σ2

v).

In this linear Gaussian set up, an optimal forecast would be obtained by employing the
Kalman filter. However, forecasters cannot flexibly update their forecasts every period.

7While our focus is on professional forecasters, this model can be applied to other decision makers such
as households or firms by suitably modifying the objective function and by adding additional constraints.

8In Appendix D.6 we explore a richer driving process which delivers qualitatively similar results to those
reported in the subsequent sections.
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Instead, in a given period, a forecaster is only able to revise her prediction for the higher
frequency with probability q, and her prediction for the lower frequency with probability p.9

The Calvo-like probabilities, q and p, give rise to four distinct cases:
Case 1: With probability (1− q)(1− p), the forecaster does not update at all.
Case 2: With probability q(1−p), the forecaster updates the higher frequency forecast, but
not the lower frequency forecast. In this case, she updates her higher frequency prediction
based on the signals received and subject to the consistency constraint.
Case 3: With probability (1 − q)p, the forecaster updates her lower frequency forecast,
but not the higher frequency forecast. We interpret this case as a scenario in which the
forecaster simply “brings in” the latest release, xt−1, and updates her prediction at the lower
frequency accordingly. Importantly, the agent does not update the rest of the sequence of
higher frequency forecasts.10

Case 4: With probability pq, the forecaster can optimally update predictions for both
frequencies based on the signals received.

3.2 High Frequency Overreactions

From the perspective of the model, high frequency overreactions are due to Case 2 updating.
As a result, the probability q(1 − p) governs the signs and magnitudes of the coefficients
reported in Table 1. Since any point in time can be defined by its low and high frequency pair
(e.g., year-quarter), we will denote time t by its low ` and high h frequency correspondence
(i.e., t = `h). We can express the Case 2 prediction, in general, as:

x̂i`h′|`h = Ei`h(x`h′) +
1

H

H∑
h′=1

[
Ei`h−j(x`h′)− Ei`h(x`h′)

]
, ` ∈ [0,∞), h′, h ∈ [1, H], (7)

where H is the number of high frequency periods in one low frequency period (e.g., the
number of quarters in a year). Furthermore, x̂i`h′|`h denotes agent i’s reported prediction in
period `h for some future high frequency period, `h′. The subscript `h − j refers to period

9In principle, it is possible for forecasters to anchor over different frequencies. We abstract away from
this for parsimony and due to lack of sufficiently rich survey data to inform the extent such heterogeneity.

10This scenario does not play an important role in our findings. The estimated model, discussed in the
next section, implies that Case 3 updating occurs only 0.001% of the time.
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in which the low frequency prediction was last updated. The reported forecast is the sum of
the optimal conditional expectation and a term capturing the gap between the path of the
outdated low frequency forecast and what it should be based on the latest information.

We can rearrange (7) in order to more transparently characterize the source of overreac-
tions:

x̂i`h′|`h =
H − 1

H
Ei`h(x`h′) +

1

H
Ei`h−j(x`h′)︸ ︷︷ ︸

Traditional smoothing motive

+
1

H

H∑
h′′ 6=h′

[
Ei`h−j(x`h′′)− Ei`h(x`h′′)

]
︸ ︷︷ ︸

Source of overreactions

.

The first two terms on the right hand side of the above expression reflect averaging between
current and past forecasts that arises in standard revision smoothing models (Scotese, 1994).
The last term is responsible for generating overreactions in our model. This sum reflects the
differences in the conditional expectations between `h and `h− j for the other periods over
which the forecaster smooths her forecast. As high frequency data are realized within a low
frequency period, this sum incorporates past forecast errors. To see this, note that (7) can
be re-written as:

x̂i`h′|`h = Ei`h(x`h′)−
1

H

h−1∑
j=k

[
x`j − Ei`j(x`j)

]
− 1

H

H∑
j′=h

[
Ei`h(x`j′)− Ei`h−k(x`j′)

]
, (8)

where the second term on the right hand side reflects past forecast errors.
Overreactions arise because low-frequency inattention and high-to-low frequency consis-

tency, together, introduce past rational mistakes into the reported prediction. Based on the
second term in (8), if x`h−1 comes in above expectations, then the forecaster will mark down
her current forecast in order to preserve consistency.11 As a result, a positive rational ex-
pectations error today predicts a positive ex-post forecast error tomorrow. These erroneous
revisions are later corrected as new and relevant information arrives in the next period,
generating observed overreactions.

11Note that while inattention will result in aggregate underreaction at both frequencies, there is no
individual-level underreaction at the annual frequency.
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Figure 2: Overreaction and Model Parameters

Note: The figure plots the simulated BGMS coefficient as a function of the fundamental and informational
model parameters. The bold line reflects the estimated parameters reported in Table 5. The gray lines
reflect these same point estimates for all but one parameter, where that parameter is instead set to its lower
(upper) bound based on a 95% confidence interval.

3.3 Analyzing the Model

We concentrate on the Bordalo et al. (2020) (BGMS) coefficient, which regresses year-over-
year errors on year-over-year revisions. We note, however, that similar findings arise with the
other measures of prediction efficiency reported in Table 1. Figure 2 plots simulated BGMS
coefficients across a range of different parameter values collectively governing the state and
signals.

The model features rich dynamics across horizons and frequencies. As a result, the
coefficients studied in Section 2 are nonlinear functions of the underlying model parameters.12

12We derive the errors-on-revisions coefficient implied by the model in Appendix B.2.
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To provide intuition for the model’s ability to generate overreactions, we therefore rely on
simulated comparative statics.

Panels 1 and 2 display the relationship between the BGMS coefficient and the parameters
governing the latent state. Based on Panel 1, as the underlying process approaches a unit
root, the scope for overreactions declines. This is consistent with Bordalo et al. (2020) and
Afrouzi et al. (2021) who find that overreactions are decreasing in ρ. From the lens of
our model, a more persistent variable reduces the scope for forecast reshuffling through the
consistency constraint since the variability of the system is increasingly driven by persistent
shocks. Panel 2 reports the results for the state volatility, σw. Similar to Panel 1, here we
find that the scope for overreactions is decreasing in σw. As σw rises, forecast errors are
increasingly driven by the persistent shock which, again, reduces the volatility of offsetting.

On the other hand, Panels 3 and 4 show that the BGMS coefficient is decreasing in
public and private noise. All else equal, higher noise variances mean that forecast errors
are increasingly driven by transitory shocks. Since these shocks are short lived, agents
find themselves often changing the manner in which they offset their revisions, raising the
volatility of forecast reshuffling and generating stronger observed overreactions.

Sticky information is an important feature of our model. To assess the role that infrequent
annual updating plays in driving observed overreactions, we focus on the frequency of Case
2 updating. Figure 3 illustrates how individual overreactions depend on q(1 − p), which is
the probability of Case 2 updating. As q(1−p) increases, agents increasingly find themselves
updating their quarterly predictions based on news while keeping their annual outlooks the
same. In this case, agents respond to news, but offset their sequence of revisions so as to
preserve consistency. These excessive revisions are responsible for generating overreactions.

4 Model Estimation

While our model can generate overreactions among forecasters, quantifying the importance
of our mechanism requires us to estimate the model parameters. We therefore discipline the
model with micro data from the SPF. For our baseline results, we fit the model to real GDP
growth forecasts. Of the seven parameters, we first fix the unconditional mean, µ = 2.4,
consistent with the sample mean of real-time real GDP growth over this period.
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Figure 3: Overreaction and Updating Probabilities

Note: The figure plots the simulated BGMS coefficient as a function of the probability of Case 2 updating.
The bold line reflects the estimated parameters reported in Table 5. The gray lines reflect these same point
estimates for all but one parameter, where that parameter is instead set to its lower (upper) bound based
on a 95% confidence interval.

We estimate the remaining six parameters via SMM as detailed in Appendix C.13 The
parameters to be estimated are θ = (ρ σw σe σv q p)

′. These parameters are chosen to
match eight data moments: the covariance matrix of current-quarter and current-year fore-
casts, the covariance matrix of current-quarter forecast revisions and last quarter’s real-time
forecast error, and the mean squared real-time errors associated with current-quarter pre-
dictions and current-year predictions. Appendix C details how these moments are related to
the parameters.14

13We also explored an alternative strategy by first estimating the data generating process parameters via
maximum likelihood estimation (MLE) using real GDP growth as our observation, and then estimating the
remaining parameters via SMM. This joint MLE-SMM approach delivers quantitatively similar results to
those reported in Table 5.

14We do not directly target rates of micro-level inattention in our baseline estimation approach, however,
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Table 5: Model Estimation Results

Panel A: Parameter Estimates
Parameter Estimate Standard error

Persistence of latent state ρ 0.441 0.071
State innovation dispersion σw 1.842 0.126
Public signal noise σe 1.289 0.327
Private signal noise σv 0.934 0.191
Probability of quarterly update q 0.999 0.078
Probability of annual update p 0.581 0.042
Panel B: Moments

Model moment Data moment t-statistic

Std(CQ forecast) 1.682 1.745 0.607
Corr(CQ forecast, CY forecast) 0.687 0.685 0.594
Std(CY forecast) 1.096 1.115 0.349
Std(CQ revision) 1.572 1.589 0.140
Corr(CQ revision, lagged CQ error) 0.127 0.138 0.387
Std(lagged CQ error) 1.672 1.749 0.883
CQ RMSE 1.688 1.717 0.522
CY RMSE 1.102 1.109 0.157

Note: Panel A reports the model parameters with point estimates reported in the third column and standard
errors reported in the fourth column. Panel B reports the model vs. data moments with the t-statistics of
the null of equality of the two moments reported in the fourth column. ‘CQ’ denotes current-quarter and
‘CY’ denotes current-year. J-statistic is 4.256, with p-value of 0.12.

4.1 Estimation Results

The estimated parameters are reported in Panel A of Table 5. The underlying persistence
of the latent state is estimated to be 0.44. In addition, the dispersion in state innovations is
1.84 while the dispersion of public and private noise are 1.29 and 0.93, respectively. These
estimates imply a signal-to-noise ratio of about σw

σe+σv
≈ 0.83. Furthermore, the probability

of quarterly updating is about one, implying that forecasters update their quarterly predic-
tions in every period. Lastly, the probability of annual updating is estimated to be 0.58,
meaning that forecasters update their annual predictions slightly more than twice a year.
This estimated probability is significantly below one, indicating that there is scope for the

in unreported results we estimate our model by targeting the share of small revisions (up to one-tenth of a
percentage point) at the quarterly and annual frequencies rather than targeting the quarterly and annual
mean squared errors. We obtained similar estimates when taking this approach.
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Table 6: Non-targeted Moments

Model Data

1. β(FECQ,FRCQ) 0.046 (0.046) -0.266 (0.059)
2. β(FE1Q,FR1Q) -0.179 (0.105) -0.145 (0.073)
3. β(FE2Q,FR2Q) -0.567 (0.115) -0.334 (0.066)
4. β(FE3Q,FR3Q) -0.905 (0.184) -0.657 (0.087)

5. β(FRCQ,FR1Q−1) -0.091 (0.063) -0.131 (0.057)
6. β(FR1Q,FR2Q−1) -0.305 (0.028) -0.302 (0.055)
7. β(FR2Q,FR3Q−1) -0.510 (0.027) -0.424 (0.050)

8. β(FEY Y, FRY Y ) -0.177 (0.074) -0.236 (0.137)
9. β(FEYY, Outcome) -0.067 (0.096) -0.134 (0.070)
10. β(FECQ,FECQ−1) 0.148 (0.051) 0.147 (0.054)

Note: The table reports regression coefficients in the model as well in the data. Standard deviations and
standard errors are reported in parentheses. ‘FE’ refers to forecast error, ‘FR’ refers to forecast revision, and
‘CQ, 1Q, 2Q,3Q,YY’ refer to current quarter, one-quarter ahead, two-quarters ahead, three-quarters ahead,
and year-over-year, respectively.

model to generate overreactions. Our estimates imply that annual anchoring is a meaningful
friction in the model. In the absence of infrequent annual updating, the root mean squared
error for current-quarter predictions would fall by 10%.

The model is able to successfully replicate the targeted features of the data. Panel B of
Table 5 reports the model-implied moments and the empirical moments, scaled to correlations
and standard deviations. The fourth column of Panel B reports t-statistics which indicate
that the model moments are statistically indistinguishable from their empirical counterparts.
A test of overidentifying restrictions delivers a p-value of 0.12, failing to reject the null
hypothesis thereby lending additional support to the validity of the estimates.

4.2 Non-targeted Moments

Having evaluated the estimated model and assessed its fit to the targeted moments, we next
turn to analyzing its ability to replicate the overreactions observed in the data.

Table 6 reports ten non-targeted regression coefficients. Rows 1 to 4 report individual-
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level regression coefficients of errors-on-revisions at the current quarter as well as one-, two-,
and three-quarter ahead horizons. Rows 5 to 7 report revision autocorrelation coefficients
for the current quarter as well as one- and two-quarters ahead. Row 8 reports the BGMS
coefficient of errors-on-revisions. Row 9 reports the estimated coefficient from a regression of
the year-over-year forecast error on the realized outcome as in Kohlhas and Walther (2021).
Across these regressions, the model nearly always predicts individual overreactions.

One limitation of the estimated model is that it does not generate a negative errors-on-
revisions coefficient for current-quarter forecasts (row 1 of Table 6). This is because the model
assumes that the news that forecasters receive is about the present. As a result, forecasters
place more importance on minimizing current quarter errors, and optimally reshuffle their
future forecasts, for which the signals are less informative, to maintain annual consistency.
If signals were informative about future quarters rather than the current quarter, then the
model would generate a negative errors-on-revisions coefficient for current-quarter forecasts.

The final row of Panel A displays estimates of forecast error persistence. We report this
estimate to highlight our model’s ability to reproduce another feature of the data: positively
autocorrelated individual-level errors. In a rational setting in which forecasters are able to
observe past realizations of the variable of interest, errors should not exhibit persistence.15

Our model is able to generate forecast error persistence precisely because annual inattention
introduces lagged errors into reported forecasts. We find this to be a desirable feature of
our model as it allows us to match this pattern in the data while making a more realistic
assumption about the forecaster’s information set.

In addition to successfully matching individual-level overreaction estimates, the estimated
model is also able to match consensus-level moments. We report these in Table D10.

4.3 Annual Anchoring by Macroeconomic Variable

We next estimate our baseline model for various macroeconomic variables covered in the
SPF as well as real GDP forecasts from the Bloomberg (BBG) and Wall Street Journal
(WSJ) surveys.16 To evaluate how well the model is able to account for overreactions in the

15The literature sometimes implicitly assumes that forecasters never actually observe the variable of in-
terest, thereby preserving error persistence. Here, we assume that xt−1 is observable.

16Appendix A.5 provides further details on the BBG and WSJ surveys and shows that these surveys
similarly feature robust evidence quarterly overreaction but not annual overreaction.
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Table 7: Estimates Across Macro Variables

BGMS (2020) Coefficient

Model Data

Real GDP -0.177 (0.074) -0.236 (0.137)
Nominal GDP -0.144 (0.089) -0.308 (0.060)
Real consumer spending -0.246 (0.100) -0.268 (0.061)
GDP deflator -0.149 (0.080) -0.510 (0.062)
Real residential investment -0.153 (0.094) -0.108 (0.088)
Real nonresidential investment -0.130 (-0.085) -0.031 (0.111)
Real federal spending -0.425 (0.137) -0.512 (0.068)
Real state/local spending -0.393 (0.112) -0.494 (0.086)
Unemployment -0.005 (0.087) 0.312 (0.108)
Ten year bond -0.132 (0.073) -0.114 (0.065)
3-month bill -0.051 (0.172) 0.134 (0.076)
Real GDP (BBG) -0.783 (0.148) -0.443 (0.237)
Real GDP (WSJ) -0.814 (0.150) -0.587 (0.111)

Note: The table reports the BGMS (2020) error-on-revision coefficients in the model and Driscoll and Kraay
(1998) standard errors are reported in parentheses for various macroeconomic variables covered in the SPF.
Bold values are significantly negative at the 10% level.

data, Table 7 reports empirical and simulated errors-on-revisions regression estimates, our
non-targeted moment of choice. In general, we find that our model is able to reproduce the
negative covariance between errors and revisions observed in the data. The model is also
able to generate a null result among variables for which there is no statistically significant
evidence of overreactions such as investment components and unemployment.

The empirical coefficients reported in Table 7 are also consistent with some of the com-
parative statics observed in Figure 2. For instance, there is no evidence of overreaction in
forecasts for the unemployment rate, a highly persistent aggregate.

5 Incorporating Non-Rational Expectations

To better understand the quantitative importance of our mechanism as a driver of overre-
actions, we augment our model with a behavioral friction in a supplementary exercise. We
choose a leading theory of non-rational expectations, diagnostic expectations (Bordalo et al.,
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2019; Bianchi et al., 2021; Bordalo et al., 2021; Chodorow-Reich et al., 2021; L’Huillier et al.,
2023), which is rooted in the representativeness heuristic (Kahneman and Tversky, 1972).

According to diagnostic expectations, agents form their beliefs subject to a cognitive
friction in which they conflate the objective likelihood of a type in a group with its repre-
sentativeness (i.e., the frequency of the type within the group relative to a reference group).
This is formalized in Gennaioli and Shleifer (2010).

We choose to apply the formulation of diagnostic expectations presented in Bordalo et al.
(2020) in which diagnostic forecasters place excessive weight on new information such that
their reported current-quarter prediction is:

xi,θt|t = Eit(xt) + θ
[
Eit(xt)− Eit−1(xt)

]
,

where θ is the degree of diagnosticity. When θ = 0, the model collapses to a rational
expectations model. On the other hand, in a world of diagnostic expectations, θ > 0.

The objective of this exercise is to jointly model two sources of overreaction: annual
anchoring and diagnostic expectations, and to quantify the relative importance of our an-
nual anchoring mechanism. To do so, we re-estimate the model with diagnostic expectations
while targeting two additional moments: the contemporaneous covariance of current-quarter
errors and revisions, and the variance of contemporaneous current-quarter errors. As dis-
cussed in the previous section, our baseline model cannot generate a negative correlation
between current-quarter errors and revisions. Thus, we can identify θ by targeting these
two additional moments. The estimated parameters are reported in column 1 of Table D11.
We estimate a degree of diagnosticity equal to 0.50 which is slightly lower than the esti-
mate reported in Bordalo et al. (2020) that follows a similar minimum distance estimation
procedure.

We examine the importance of annual smoothing relative to diagnostic expectations by
running three simulated regressions. Using these parameter estimates, we first simulate
a panel of forecasts and estimate regressions (1), (2), and (3). We then fix θ = 0 and
repeat this exercise. Figure 4 displays three sets of stacked bars, each corresponding to
one of the aforementioned regressions. The red bar denotes the contribution of our annual
anchoring mechanism to the overall estimate of overreactions, while the blue bar denotes
the contribution of diagnostic expectations. Based on these results, we find that annual
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Figure 4: Annual Anchoring vs. Diagnostic Expectation Contributions

Note: The figure plots the contributions of annual anchoring and diagnostic expectations to three measures
of overreactions for real GDP.

anchoring is a meaningful, and in this case dominant, driver of quarterly overreactions.
Our results suggest that annual anchoring with quarterly-to-annual consistency can be a
quantitatively important driver of overreactions.17

6 Implications for Information Frictions

In addition to serving as a source of observed overreactions, our model can also speak to the
literature on information frictions. Since our model does not allow us to readily extract an
estimate of information rigidity from a regression of consensus errors on consensus revisions
(Coibion and Gorodnichenko, 2015), we simulate the estimated model in order to retrieve

17Column 2 of Table D11 reports a related exercise in which we estimate a constrained (no diagnostic
expectations) model with the expanded set of ten moments and compare this model with the unconstrained
model (with diagnostic expectations). Figure D7 repeats the comparison of diagnostic expectation based on
simulated error predictability regressions. Our results are qualitatively similar to Figure 4.
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the steady state Kalman gains and to quantify the size of information frictions.

6.1 Model-Implied Information Frictions

Column 2 of Table 8 reports measures of implied information rigidity for SPF forecasts of
real GDP and inflation based on the GDP deflator. Since our model is a hybrid sticky-noisy
information model, we define the implied information friction to be:

Implied friction =
[
1− Pr(update)

]
+ Pr(update)× (1− κ1 − κ2), (9)

where Pr(update) denotes the probability of updating, which reflects the sticky information
feature of the model. Based on our estimates, this probability varies across frequencies.
Moreover, the role of noisy information in overall information frictions is understood through
the coefficients {κ1, κ2} which denote the Kalman gains.18

In traditional models of either sticky information or noisy information, the relevant in-
formation rigidity is governed by either the probability of updating or the Kalman gain(s).
Here, the implied friction is a combination of these two objects. With some probability,
forecasters do not update. In this case, they effectively place a weight of zero on new in-
formation. With some probability, forecasters do update, in which case they weigh new
information based on the Kalman gains. Upon updating, the relevant information friction is
one minus the sum of these optimal weights. Together, these terms capture the notion of an
information friction in a hybrid sticky-noisy information model, which can be interpreted as
an expected weight placed on new information.

In order to compare our implied information frictions to those in the literature, focus
on inflation forecasts based on the GDP deflator.19 At a quarterly frequency, we estimate
information frictions to be about 0.19 while, for annual forecasts, we find that information
frictions are higher, at 0.55. For reference, Coibion and Gorodnichenko (2015) estimate
coefficients of information rigidity to be around 0.54 while Ryngaert (2017) estimates infor-
mation frictions to be roughly 0.33. Importantly, whereas existing estimates imply a single
information friction for all frequencies, our analysis indicates that there is a difference in

18In particular, κ1 denotes the weight placed on the private contemporaneous signal and κ2 is the weight
placed on the lagged realization of the macroeconomic variable.

19Table D12 reports the parameter estimates and model fit.
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Table 8: Information Frictions Across Models

(1) (2) (3) (4)

Probability Implied Sticky info Noisy info
of updating friction contribution contribution

Real GDP
Quarterly 0.999 0.174 0% 100%
Annual 0.581 0.520 80.1% 19.4%

Inflation
Quarterly 1.000 0.190 0% 100%
Annual 0.552 0.553 81.1% 19.0%

Note: The table reports estimated updating probabilities, implied information frictions, and contributions
of sticky and noisy information for real GDP and inflation (GDP deflator) at quarterly and annual fre-
quencies. Implied information frictions are computed based on (9) with model-implied Kalman gains
{κ1, κ2} = {0.800, 0.026} and {0.783, 0.028} for real GDP and inflation, respectively. Contributions of
sticky and noisy information are computed according to (10).

frictions between quarterly and annual frequencies. We note that the average of our implied
quarterly and annual information frictions resides in between these previously documented
estimates.

While we have two signals in our model, it is important to note that only the contempo-
raneous private signal contributes to forecast dispersion. Since the lagged realization of the
macroeconomic variable is a common to all, it is a public signal. Thus if xt−1 was the only
signal, then all forecasters would make the same predictions. However, since forecasters also
observe yit, they will not have the same predictions.20 We find that the Kalman gain from the
public signal is much smaller than the one from the private signal. Hence the private signal
is more informative relative to the public signal when making a new prediction. Overall, we
regard the information friction defined in equation (9) as a measure of the extent of imperfect
information rather than a measure of information dispersion.

20Note that the sticky information friction also implies that forecasters update their information sets at
different points in time.
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6.2 Contributions of Sticky and Noisy Information

The literature on survey expectations has documented evidence consistent with both sticky
and noisy information. Our results indicate that the data favor a hybrid model featuring
signal extraction and frequency-specific inattention. In addition to providing estimates of
information frictions based on both sticky and noisy information, our model can also quantify
the relative importance of each of these channels. To do so, we normalize the implied
information friction to equal one

1 = 1− Pr(update)[
1− Pr(update)

]
+ Pr(update)× (1− κ1 − κ2)︸ ︷︷ ︸

Sticky info contribution

+ Pr(update)× (1− κ1 − κ2)[
1− Pr(update)

]
+ Pr(update)× (1− κ1 − κ2)︸ ︷︷ ︸

Noisy info contribution

. (10)

The first term in the above expression quantifies the role of sticky information in the
overall measured information rigidity while the second term quantifies the importance of
noisy information. The final two columns of Table 8 report the contributions of each form
of imperfect information to the implied friction reported in column 3. As foreshadowed by
the parameter estimates in Table 5, this accounting exercise implies that noisy information
is the primary contributor to information frictions at the quarterly frequency, while sticky
information becomes substantially more important at the annual frequency.

7 Conclusion

There are many settings in which forecasts must be made simultaneously and consistently for
multiple frequencies such as household budgeting, fiscal planning, and professional forecast-
ing. In this paper, we focus on the latter by studying the updating behavior of professional
forecasters.

We show that forecaster-level overreactions are prevalent at the quarterly frequency, but
less so at the annual frequency. Furthermore, we show that annual forecast errors underreact
to realized quarterly errors, and that forecast revisions exhibit an offsetting pattern. Moti-
vated by these facts, we build a hybrid sticky-noisy information model featuring high and
low frequency forecasts. From the lens of our model, overreactions arise because of (i) low
frequency anchoring and (ii) high-to-low frequency consistency. We find that our mechanism
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can explain a meaningful amount of overreactions to real GDP and other aggregates.
Our results also imply that information frictions vary by frequency, and we can attribute

most of the annual friction to stickiness and the quarterly friction to noisiness. This unique
decomposition is in line with forecasters making major revisions of the annual predictions
about twice a year while constantly updating the quarterly path to reflect new data releases.
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Appendix A Empirics

This section provides further detail on the data used for the empirical and model estimation
sections of the main text. For our baseline model results, we focus on forecasts of real GDP
growth.

A.1 Quarterly-to-Annual Consistency in SPF Forecasts

We provide descriptive, anecdotal, and empirical evidence to confirm that SPF forecasts sat-
isfy quarterly-to-annual consistency. First, the SPF documentation (chapter 3) details how
the monthly and quarterly observations are linked to the annual, and states that procedures
are in place to ensure that participants adhere to these formulas. A forecaster who does not
follow the specified formulas is contacted and a discussion about non-adherence ensues. Sec-
ond, we gathered anecdotal evidence by speaking to several survey participants, all of whom
verified the quarterly-to-annual consistency requirement. Third, we directly show that con-
sistency is present in the data by computing implied current-year forecasts, based on the
quarterly predictions, and comparing them with the current-year forecast actually issued by
the respondent. In the first quarter of the calendar year, the current-year forecast should
coincide with the average forecasted levels of the current-, one-, two-, and three-quarter fore-
casts. In the second quarter of the calendar year, the current-year forecast should coincide
with the average forecasted levels of the previous-, current-, one-, and two-quarter forecasts,
and so on.21

We construct implied current-year forecasts accordingly and compare them to the re-
ported current-year forecasts, finding a 0.9999 correlation between the two as indicated by
Figure A1.

A.2 Sample selection

We apply a set cleaning filters to the raw data, before estimating the regressions. First,
following Bordalo et al. (2020), for every horizon, we winsorize the observations above or
below five interquartile ranges of the sample median. Second, we keep only forecasters who

21As noted in footnote 6 of the SPF documentation, the previous quarter forecast is history which is
observable to the forecaster and is nearly never revised.
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Figure A1: Reported vs. Implied Current-Year Forecasts
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Note: The figure displays a binned scatter plot of report current-year forecasts against implied current-year
forecasts for SPF real GDP forecasts. The implied current-year forecast is computed as described in the
text.
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issue predictions for at least ten quarters. In addition, we drop the 1985Q1, 1986Q1, and
1990Q1 survey observations due to measurement error associated the reporting of annual
forecasts as noted in the SPF documentation. In addition, we drop the survey observations
in 1990Q2 because of small sample issues also noted in the SPF documentation.

As stated in the main text, we begin our sample in 1981Q3 when the SPF began to
collect annual forecasts. We end our sample in 2019Q4.

A.3 Quarterly Forecasts

Our main results utilize real GDP growth forecasts. The SPF collects predictions for the
level of real GDP, ft. We transform these to quarter-over-quarter annualized predicted real
GDP growth rates, x̂t+h|t, as follows:

x̂t+h|t =

[(
ft+h
ft−1

)4

− 1

]
× 100

Table A1 reports summary statistics of real GDP forecasts, errors, and revisions across
horizons, as well as real-time outcomes.
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Table A1: SPF Real GDP Summary Statistics

Mean Median Std. deviation 25% 75%

Annualized quarterly forecasts

Current quarter 2.314 2.500 1.948 1.700 3.287
One quarter ahead 2.593 2.655 1.566 2.025 3.300
Two quarters ahead 2.761 2.737 1.511 2.167 3.380
Three quarters ahead 2.829 2.800 1.363 2.259 3.401
Q4/Q4 2.616 2.649 1.099 2.155 3.180

Quarterly Forecast errors

Current quarter 0.084 0.021 1.810 -1.039 1.086
One quarter ahead -0.190 -0.196 2.168 -1.402 0.901
Two quarters ahead -0.268 -0.244 2.397 -1.446 0.952
Three quarters ahead -0.312 -0.323 2.395 -1.540 0.937
Q4/Q4 -0.213 -0.248 1.371 -0.976 0.573

Quarterly Forecast revisions

Current quarter -0.247 -0.102 1.757 -0.825 0.486
One quarter ahead -0.139 -0.028 1.528 -0.503 0.310
Two quarters ahead -0.088 -0.009 1.327 -0.418 0.282
Three quarters ahead 0.004 -0.00004 1.399 -0.331 0.290
Q4/Q4 -0.121 -0.056 0.798 -0.401 0.224

Real GDP

Quarterly real-time outcome 2.392 2.464 2.234 1.386 3.521

Note: The table reports summary statistics for the relevant variables utilized in the main text. The sample
is constructed from SPF real GDP growth forecast data. The sample spans 1981Q3-2019Q4.
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A.4 Annual Forecasts

The SPF collects annual real GDP forecasts which are defined as the average level of real
GDP in a given year,

fY =
fY Q1 + fY Q2 + fY Q3 + fY Q4

4
.

The annual growth rate of real GDP is defined on a year-over-year basis,

xY =

(
fY
fY−1

− 1

)
× 100

To construct current year forecasted real GDP growth, we require the most recent average
level of real GDP in the prior year. We obtain this data by collecting all vintages across
variables from the Real-Time Data Set for Macroeconomists from the Philadelphia Fed.

We define the forecast error for annual real GDP growth in year Y as xY − x̂Y |Y,Q, where
x̂Y |Y,Q is the forecast of annual real GDP growth for year Y devised at time (year-quarter)
Y,Q. We define the forecast revision as x̂Y |Y,Q − x̂Y |Y,Q−1 for quarters 2-4 of a given year
(Q > 2). For the first quarter of the calendar year, Q = 1, we define the forecast revision as
x̂Y |Y,Q − x̂Y |Y−1,Q4 (i.e., the current-year forecast devised in the first quarter of the current
calendar year minus the one year ahead forecast devised in the fourth quarter of the prior
calendar year.

Table A2 reports summary statistics of real GDP forecasts, errors, and revisions across
horizons, as well as real-time outcomes and data revisions.

Table A2: SPF Real GDP Summary Statistics

Mean Median Std. deviation 25% 75%

Current-year forecast 2.419 2.495 1.523 1.925 3.274
Current-year error 0.030 0.028 0.606 -0.209 0.237
Current-year revision -0.019 -0.00003 0.719 -0.290 0.241
Current-year real-time outcome 2.449 2.416 1.577 1.950 3.383

Note: The table reports summary statistics for the relevant current-year variables analyzed in the main text.
The sample is constructed from SPF real GDP growth forecast data. The sample spans 1981Q3-2019Q4.
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A.5 Empirical Facts: Robustness

Fixed Effects

Table A3 report the regression estimates of equations (1), (2), and (3) with forecaster fixed
effects.

Table A3: Overreaction among Individual Forecasters

Current quarter One quarter ahead Two quarters ahead Year-over-year

(1) (2) (3) (4) (5) (6) (7) (8)
Error Revision Error Revision Error Revision Error Error

Revision -0.270*** -0.160** -0.362*** -0.259*
(0.059) (0.069) (0.065) (0.137)

Previous revision -0.137** -0.319*** -0.394***
(0.058) (0.051) (0.066)

Realization -0.160**
(0.062)

Forecasters 152 143 143 142 138 141 137 136
Observations 4193 3545 3566 3531 3466 3435 3199 3104

Note: The table reports panel regression results from SPF forecasts of real GDP growth based on regressions
(1), (2), and (3). Standard errors are reported in parentheses. Standard errors are clustered by forecaster
and time. *** denotes 1% significance, ** denotes 5% significance, and * denotes 10% significance.

Table A4 reports estimates of annual version of equations (1) and (3) with forecaster
fixed effects.
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Table A4: No Annual Overreaction among Individual Forecasters

(1) (2) (3)
Annual error Annual error Annual error

Revision -0.095
(0.058)

Realization 0.021
(0.024)

Realized quarterly error 0.037*
(0.019)

Forecasters 137 137 137
Observations 4045 4049 4035

Note: The table reports panel regression results from SPF forecasts of real GDP growth based on regressions
(1), (3), and (4). Standard errors are reported in parentheses. Standard errors are clustered by forecaster
and time. *** denotes 1% significance, ** denotes 5% significance, and * denotes 10% significance.

Other Macroeconomic Variables

In addition to the real GDP forecasts analyzed in the main text, in this section we document
our more novel empirical facts for ten other variables in the SPF. We first list the variables
analyzed in this section and then report the results.

List of variables

1. GDP Deflator (PGDP)

2. Nominal GDP (NGDP)

3. Real consumption expenditures (RCON)

4. Real federal government spending (RFED)

5. Real state and local government spending (RSL)

6. Real non-residential investment (RNRES)

7. Real residential investment (RRES)

8. 3-month Treasury bill (TBILL)
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9. 10-year government bond (TBOND)

10. Unemployment rate (UE)

Tables A5 and A6 report the estimates of annual versions of regressions (1) and (2) across
different macroeconomic variables in the SPF.

Table A5: Annual Errors vs. Annual Revisions, by Variable

Estimate Std. error Forecasters Obs

Unemployment rate 0.167 0.108 163 4151
3-month Treasury bill 0.143* 0.082 158 3876
10-year bond -0.052 0.073 113 3207
GDP Deflator -0.190*** 0.044 135 3700
Nominal GDP -0.101** 0.048 159 3830
Real consumption expenditures -0.115*** 0.039 131 3713
Real federal government spending -0.100 0.060 144 3499
Real state & local government spending -0.338*** 0.086 144 3517
Real residential investment 0.002 0.089 146 3634
Real non-residential investment 0.085 0.097 146 3663

Note: The table reports estimates of the annual analog to regression (1). Standard errors are reported in
parentheses. Standard errors are clustered by forecaster and time. *** denotes 1% significance, ** denotes
5% significance, and * denotes 10% significance.

Table A7 reports estimates of regression (4) for different macroeconomic variables in the
SPF.
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Table A6: Annual Errors vs. Annual Outcome, by Variable

Estimate Std. error Forecasters Obs

Unemployment rate -0.025** 0.011 175 5116
3-month Treasury bill -0.026** 0.013 172 4818
10-year bond 0.0004 0.016 114 3910
GDP deflator -0.043** 0.022 135 4594
Nominal GDP -0.050* 0.026 173 4771
Real consumption expenditures 0.047 0.032 134 4530
Real federal government spending 0.040 0.031 162 4380
Real state & local government spending 0.026 0.035 161 4389
Real residential investment 0.017 0.029 164 4512
Real non-residential investment -0.072** 0.028 163 4548

Note: The table reports estimates of the annual analog to regression (3). Standard errors are reported in
parentheses. Standard errors are clustered by forecaster and time. *** denotes 1% significance, ** denotes
5% significance, and * denotes 10% significance.

Table A7: Annual Errors vs. Lagged Quarterly Errors, by Variable

Estimate Std. error Forecasters Obs

Unemployment rate 0.361*** 0.114 166 4172
3-month Treasury bill 0.377*** 0.087 158 3901
10-year bond 0.008 0.082 113 3236
GDP Deflator 0.022 0.022 135 3749
Nominal GDP 0.044*** 0.014 161 3845
Real consumption expenditures 0.006 0.018 131 3726
Real federal government spending 0.010 0.015 144 3524
Real state & local government spending 0.027 0.020 144 3532
Real residential investment 0.062*** 0.020 145 3651
Real non-residential investment 0.048* 0.028 145 3659

Note: The table reports estimates of the annual analog to regression (3). Standard errors are reported in
parentheses. Standard errors are clustered by forecaster and time. *** denotes 1% significance, ** denotes
5% significance, and * denotes 10% significance.
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Figure A2: Offsetting interaction regression, current-quarter horizon

Note: The figure plots estimates of regression (6) across different variables in the SPF. Standard errors are
clustered at the forecaster and date levels
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Figure A3: Offsetting interaction regression, one-quarter ahead horizon

Note: The figure plots estimates of regression (6) across different variables in the SPF. Standard errors are
clustered at the forecaster and date levels.
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Figure A4: Offsetting interaction regression, two-quarter ahead horizon

Note: The figure plots estimates of regression (6) across different variables in the SPF. Standard errors are
clustered at the forecaster and date levels.
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Figure A5: Offsetting interaction regression, three-quarter ahead horizon

Note: The figure plots estimates of regression (6) across different variables in the SPF. Standard errors are
clustered at the forecaster and date levels.
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Other Surveys

In this section, we show that our empirical findings arise in surveys outside of the SPF. Since
our analysis requires the availability of an annual forecast and its quarter-by-quarter path,
we are unable to utilize surveys such as BlueChip, Consensus Economics, or the ECB Survey
of Professional Forecasters. However, we are able to exploit the Bloomberg (BBG) Survey
and the Wall Street Journal (WSJ) Survey.

The BBG and WSJ surveys are non-anonymous surveys of professional forecasters. We
observe the forecasters’ quarterly forecasts for a given year as well as their calendar year
forecasts. Our sample for the BBG survey spans 1993Q2 to 2016Q3 while our WSJ sample
spans 1982Q1 to 2019Q4.

Table A8 reports the BGMS coefficient and Kohlhas and Walther (2021) coefficient across
both surveys and verifies that quarterly forecasts exhibit overreaction at the individual level.

Table A8: Individual-level Quarterly Overreactions in BBG and WSJ Surveys

BBG WSJ
Error Error Error Error

Revision -0.443* -0.587***
(0.237) (0.111)

Realization -0.387** -0.189***
(0.152) (0.066)

Forecasters 33 39 84 132
Observations 151 182 544 2153

Note: The table reports panel regression results of (1) and (2) from BBG and WSJ forecasts. Standard
errors clustered by forecaster and time are reported in parentheses. *** denotes 1% significance, ** denotes
5% significance, and * denotes 10% significance.

Table A9 reports the annual analog to the regressions in Table A8, which shows that
there is no evidence of annual overreaction at the forecaster level.
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Table A9: No Individual-level Annual Overreactions in BBG and WSJ Surveys

BBG WSJ
Error Error Error Error

Revision 0.025 -0.025
(0.066) (0.017)

Realization -0.102 -0.142
(0.113) (0.133)

Forecasters 62 57 148 144
Observations 269 228 3546 2528

Note: The table reports panel regression results of the annual analogs of (1) and (2) from BBG and WSJ
forecasts. Standard errors clustered by forecaster and time are reported in parentheses. *** denotes 1%
significance, ** denotes 5% significance, and * denotes 10% significance.
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Appendix B Model

In this section, we describe the multi-frequency model featuring annual smoothing in further
detail. We also derive the errors-on-revisions coefficient from the perspective of the model.

B.1 Model Description

Suppose that in each period, professional forecasters devise predictions at some point in
time, `h, for some future period `′h′. The subscript ` represents the low frequency period
while the subscript h denotes the high frequency period (within the low frequency period).
For instance, `h can refer to a year-quarter (e.g., year 2019, quarter 1). We define H to
be the total number of high frequency periods within a low frequency period. For instance,
there are H = 4 quarters in a year.

Forecasters in the model wish to minimize their squared errors:

min
{x̂i

`′h′|`h}

∞∑
`′=`

H∑
h′=1

(x`′h′ − x̂i`′h′|`h)2, `′, ` ∈ [0,∞), h′, h ∈ [1, H], (11)

where x̂i`′h′|`h denotes forecaster i’s predictions about x in period `′h′ based on information
in period `h.

When forecasters are able to freely update high and low frequency forecasts, they report
the following optimal high frequency prediction:

x̂i`′h′|`h = Ei`h(x`′h′),

and low frequency prediction,

x̂i`′|` =
1

H

H∑
h′=1

x̂i`′h′|`h.

If a forecaster is able to update her short-run predictions but not her long-run predictions,
then she must solve the optimization problem above subject to the requirement that the
updated high frequency forecasts coincide with the outdated low frequency forecast:

1

H

H∑
h′=1

x̂i`′h′|`h =
1

H

H∑
h′=1

x̂i`′h′|`h−j, (12)
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where x̂i`′h′|`h−j denotes the period in which the annual forecast was last updated.
In this case, the forecaster solves (11) subject to (12).
The Lagrangian is

L =
∞∑
`′=`

{ H∑
h′=1

(x`′h′ − x̂i`′h′|`h)2 − λ
(

1

H

H∑
h′=1

x̂i`′h′|`h −
1

H

H∑
h′=1

x̂i`′h′|`h−j

)}

The first order condition with respect to the reported forecast x̂i`′h′|`h implies

x̂i`′h′|`h = Ei`h(x`′h′) +
λ

2H
. (13)

Combining the FOC with the definition of the constraint delivers:

1

H

H∑
h′=1

x̂i`′h′|`h−j =
1

H

H∑
h′=1

[
Ei`h(x`′h′) +

λ

2H

]
.

Rearranging, we obtain:

λ = 2H

[
1

H

H∑
h′=1

x̂i`′h′|`h−j −
1

H

H∑
h′=1

Ei`h(x`′h′)
]

Substituting this expression for the Lagrange multiplier into the FOC for the reported fore-
cast, we recover an intuitive expression:

x̂i`′h′|`h = Ei`h(x`′h′) +

[
1

H

H∑
h′=1

x̂i`′h′|`h−j −
1

H

H∑
h′=1

Ei`h(x`′h′)
]

or, equivalently,22

x̂i`′h′|`h = Ei`h(x`′h′) +
1

H

H∑
h′=1

[
Ei`h−j(x`′h′)− Ei`h(x`′h′)

]
. (14)

22This follows from the fact that whenever the forecaster constructed her outdated annual, she did so
optimally, based on the conditional expectation as of date `h− j.
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B.2 Errors-on-Revisions Coefficient

We can express the forecaster’s reported forecast as:

x̂i`h′|`h = Ei`h(x`h′) +
1

H

H∑
j′=0

[
Ei`h−k(x`j′)− Ei`h(x`j′)

]
where 0 ≤ h − k ≤ h ≤ h′ ≤ H. In other words, the forecast devised at time `h for future
period `h′ is equal to the conditional expectation plus a sum of revisions of x from `0, ..., `H

where the revision is taken relative to the expectation at `h− k which denotes the period in
which the annual forecast was last updated.

We can express this more generally in order to account for the fact that `h can refer to
any point in the calendar year. If `h were in, say, Q2, then the forecast would include some
past errors in the summation. In other words, we can split the sum above and express the
reported forecast as:

x̂i`h′|`h = Ei`h(x`h′)−
1

H

h−1∑
j=k

[
x`j − Ei`j(x`j)

]
− 1

H

H∑
j′=h

[
Ei`h(x`j′)− Ei`h−k(x`j′)

]
Now, the middle term reflects nowcast errors between yesterday (`h − 1) and when the

annual forecast was last updated (`h− k). We don’t care about the forecast errors between
`0, ..., `k − 1 because those would have already been updated at `k (i.e., when the annual
forecast was last revised).

The forecast error is:

x`h′ − x̂i`h′|`h = x`h′ − Ei`h(x`h′) +
1

H

h−1∑
j=k

[
x`j − Ei`j(x`j)

]
+

1

H

H∑
j′=h

[
Ei`h(x`j′)− Ei`h−k(x`j′)

]
The forecast error is a function of: (i) the optimal forecast error, (ii) lagged nowcast

error(s), and (iii) forecast revisions.
Turning to the forecast revision, if a forecaster in our model revises her quarterly forecast

today, then she must either be optimally updating both her quarterly and annual forecasts,
or she must be updating her quarterly forecast but not her annual forecast. In the first case,
forecast errors and revisions are optimal and there is no correlation between the two. In the
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second case, we can get non-zero β(FE,FR). Suppose that we are in the second case.
In addition, it is possible that the forecaster was able to update both the annual forecast

yesterday. On the other hand, it is also possible that the forecaster was only able to update
the quarterly forecast yesterday, leaving the annual the same. So there are two cases to
potentially consider: (i) Case 2 updating today with Case 1 updating yesterday, and (ii)
Case 2 updating today with Case 2, 3, or 4 updating yesterday. Below, we derive the errors-
on-revisions coefficient assuming (i) and then show that the forecaster’s reported forecast
revision is the same in (ii) as it is in (i), implying that (i) and (ii) yield the same errors-on-
revisions coefficient.

(i) Case 2 updating today, Case 1 updating yesterday

If we have Case 2 updating today with Case 1 updating yesterday, then deriving the errors-
on-revisions coefficient is fairly straightforward. In this case, k = h− 1 so the error is:

x`h′ − x̂i`h′|`h = x`h′ − Ei`h(x`h′) +
1

H

[
x`h−1 − Ei`h−1(x`h−1)

]
+

1

H

H∑
j′=h

[
Ei`h(x`j′)− Ei`h−1(x`j′)

]
= x`h′ − Ei`h(x`h′) +

1

H

[
x`h−1 − Ei`h−1(x`h−1)

]
+

(
1

H

H∑
j′=h

ρj
′
)[

Ei`h(x`h)− Ei`h−1(x`h)
]

and the forecast revision is:

x̂i`h′|`h − x̂`h′|`h−1 = Ei`h(x`h′)−
1

H

[
x`h−1 − Ei`h−1(x`h−1)

]
− 1

H

H∑
j′=h

[
Ei`h(x`j′)− Ei`h−1(x`j′)

]
− Ei`h−1(x`h′)

= Ei`h(x`h′)− Ei`h−1(x`h′)−
1

H

[
x`h−1 − Ei`h−1(x`h−1)

]
− 1

H

H∑
j′=h

[
Ei`h(x`j′)− Ei`h−1(x`j′)

]
=

(
ρh

′−h − 1

H

H∑
j′=h

ρj
′
)[

Ei`h(x`h)− Ei`h−1(x`h)
]
− 1

H

[
x`h−1 − Ei`h−1(x`h−1)

]
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The covariance of errors and revisions is

Cov(FE,FR) =
1

H

(
ρh

′−h − 2

H

H∑
j′=h

ρj
′
)
Cov

(
x`h−1 − Ei`h−1(x`h−1),Ei`h(x`h)− Ei`h−1(x`h)

)

−
(

1

H

)2

V ar
(
x`h−1 − Ei`h−1(x`h−1)

)
+

(
1

H

H∑
j′=h

ρj
′
)[
ρh

′−h − 1

H

H∑
j′=h

ρj
′
]
V ar

(
Ei`h(x`h)− Ei`h−1(x`h)

)
The variance of the forecast revision is:

V ar(x̂`h′|`h − x̂`h′|`h−1) = V ar

([
ρh

′−h − 1

H

H∑
j′=h

ρj
′
](
Ei`h(x`h)− Ei`h−1(x`h)

)
− 1

H

[
x`h−1 − Ei`h−1(x`h−1)

])

=

(
ρh

′−h − 1

H

H∑
j′=h

ρj
′
)2

V ar
(
Ei`h(x`h − Ei`h−1(x`h)

)
+

(
1

H

)2

V ar
(
x`h−1 − Ei`h−1(x`h−1)

)
− 2

H

(
ρh

′−h − 1

H

H∑
j′=h

ρj
′
)
Cov

(
x`h−1 − Ei`h−1(x`h−1),Ei`h(x`h)− Ei`h−1(x`h)

)
Recall that κ1 and κ2 denote the Kalman gain coefficients associated with the contempo-

raneous signal, yi`h and x`h−1, respectively. In addition, let Ψ11 and Ψ22 denote the variance
of the one step ahead state estimation error, V ar

(
s`h − Ei`h−1(s`h)

)
and the lagged current-

quarter state estimation error, V ar(s`h−1 − Ei`h−1(s`h−1)
)
, where Ψ11 = ρΨ22 + σ2

w. These
variances and Kalman gains are obtained from the Kalman filter.

Using this notation, we can express the variance of the lagged current-quarter error as:

V ar(x`h−1 − Ei`h−1
(
x`h−1)

)
= Ψ22 + σ2

e ,

the variance of the revision as:

V ar
(
Ei`h(x`h)− Ei`h−1(x`h)

)
= κ21(Ψ11 + σ2

v) + κ22(Ψ22 + σ2
e) + 2κ1κ2ρΨ22,
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and the covariance of the revision and the lagged current-quarter error as:

Cov
(
Ei`h−1(x`h)− Ei`h−1(x`h−1), x`h−1 − Ei`h−1(x`h−1)

)
= (κ1ρ+ κ2)Ψ22 + κ2σ

2
e .

As a result, the errors-on-revisions coefficients can be expressed as:

β(FE,FR) =
Cov(FE,FR)

V ar(FR)

where

Cov(FE,FR) =
1

H
(ρh

′−h − 2

H

H∑
j′=h

ρj
′
)
[
(κ1ρ+ κ2)Ψ22 + κ2σ

2
e

]
− 1

H2
(Ψ22 + σ2

e)

+ (
1

H

H∑
j′=h

ρj
′
)(ρh

′−h − 1

H

H∑
j′=h

ρj
′
)
[
(κ21(Ψ11 + σ2

v) + κ22(Ψ22 + σ2
e) + 2κ1κ2ρΨ22

]
and

V ar(FR) = (ρh
′−h − 1

H

H∑
j′=h

ρj
′
)2
[
κ21(Ψ11 + σ2

v) + κ22(Ψ22 + σ2
e) + 2κ1κ2ρΨ22

]
+

1

H2
(Ψ22 + σ2

e)

− 2

H
(ρh

′−h − 1

H

H∑
j′=h

ρj
′
)
[
(κ1ρ+ κ2)Ψ22 + κ2σ

2
e

]
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(ii) Case 2 updating today, no Case 1 updating yesterday

In this case, since the annual was neither updated today nor yesterday, we can denote `h−k
as the period in which the annual was last updated. The error is:

FE = x`h′ − Ei`h′ +
1

H

h−1∑
j=k

[
x`j − Ei`j(x`j)

]
+

1

H

H∑
j′=h

[
Ei`h(x`j′)− Ei`h−k(x`j′)

]
= x`h′ − Ei`h′ +

1

H

h−1∑
j=k

[
x`j − Ei`j(x`j)

]
+

(
1

H

H∑
j′=h

ρj
′
)[

Ei`h(x`h)− Ei`h−k(x`h)
]

= x`h′ − Ei`h′ +
1

H

h−2∑
j=k

[
x`j − Ei`j(x`j)

]
+
[
x`h−1 − Ei`h−1(x`h−1)

]
+

(
1

H

H∑
j′=h

ρj
′
)[

Ei`h(x`h)− Ei`h−k(x`h)
]

In the last line above, we split apart the summation in the second term. As we can see, the
difference in the expression of the forecast error in this case versus the previous case boils
down to this case including passed errors as well, 1

H

∑h−2
j=k

(
x`j − Ei`j(x`j)

)
.

The forecast revision is:

Ei`h(x`h′)−
1

H

h−1∑
j=k

[
x`j − Ei`j(x`j)

]
− 1

H

H∑
j′=h

[
Ei`h(x`j′)− Ei`h−k(x`j′)

]
−Ei`h−1(x`h′) +

1

H

h−2∑
j=k

[
x`j − Ei`j(x`j)

]
+

1

H

H∑
j′=h

[
Ei`h−1(x`j′)− Ei`h−k(x`j′)

]
Simplifying this expression, we obtain:

Ei`h(x`h′)− Ei`h−1(x`h′)−
1

H

[
x`h−1 − Ei`h−1(x`h−1)

]
− 1

H

H∑
j′=h

[
Ei`h(x`j′)− Ei`h−1(x`j′)

]
The forecast revision here is the same as the forecast revision obtained when assuming that
forecasters efficiently updated last period.

Since the revisions are identical across (i) and (ii), we know that the variance of the
revision will be the same too. Will the covariance of the errors and revisions be the same
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as well? Yes. The only difference is the additional term in the forecast error reflecting past
errors, but this term is uncorrelated with any of the terms defining the forecast revision.
This means that we will recover the exact same covariance of errors and revisions derived
above. Taken together, this implies that the errors-on-revisions coefficient will also be the
same as the one derived above.
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Appendix C Estimation

The model is estimated via the simulated method of moments. Operationally, this is done by
simulating a balanced panel of 250 forecasters over 40 periods, consistent with the average
number of quarterly forecasts that a unique forecaster contributes throughout the history
of the survey.23 For each iteration, the target moments are computed, averaged across
simulations, and compared to their empirical analogs. The six-dimensional parameter vector,
θ, is selected to minimize the weighted distance between simulated moments and empirical
moments, where the asymptotically efficient weighting matrix is specified.

Formally, we search the parameter space, using a particle swarm procedure, to find the
θ̂ that minimizes the following objective

min
θ

(
m(θ)−m(X)

)′
W
(
m(θ)−m(X)

)
where m(θ) denotes the simulated moments, m(X) denotes the empirical moments, and W
denotes the weighting matrix. The limiting distribution of the estimated parameter vector
θ̂ is √

N(θ̂ − θ) d→ N (0,Σ)

where

Σ =

(
1 +

1

S

)[(
∂m(θ)

∂θ

)′
W

(
∂m(θ)

∂θ

)]−1
and S = 100. Standard errors are obtained by numerically computing the partial derivative
of the simulated moment vector with respect to the parameter vector.

C.1 Identification

The eight moments jointly determine the six parameters that reside in vector θ. Figure C6
illustrates some important comparative statics that lend support to the choice of target
moments which are discussed below.

The underlying persistence of the latent state, ρ, is in part identified by the covariance
between the current-quarter forecast and the current-year forecast. With a highly persistent

23Similar results are obtained when mimicking the unbalanced nature of the panel data by simulating a
larger set of forecasters and matching missing observations.
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data generating process, the covariance between current-quarter and current-year forecasts
will be strongly positive. Moreover, the updating probabilities, q and p, inform the relevant
mean squared errors.

The dispersion parameters, σw, σe, and σv require further discussion. Two of these
parameters reflect noise variance (σe and σv) while the other (σw) reflects the variance of the
latent state innovations. Recognizing the distinction between noise and signal is essential for
the identification of these parameters.

First, the variance of the underlying state innovations, σw, is identified in part from the
variance of the current-year forecast. Recall that the current-year forecast is: 1

4

∑3
h=0 x̂

i
t+h|t.

As the end of the year approaches, more and more realizations of xt within the year figure
into the optimal current-year projection, replacing the filtered forecasts that are subject
to private noise. For this reason, an increase in σw raises the variance of the current-year
forecast.

Moreover, higher levels of public noise, σe, contribute to a larger forecast error variance.
The link between common noise and the variance of errors is intuitive since the transitory
component, et, is linear in the macroeconomic aggregate being predicted (xt).

Lastly, private noise variance, σv, informs the covariance between revisions and lagged
errors. Based on the model, the filtered current-quarter forecast revision is:

xit|t − xit|t−1 = κ1(y
i
t − xit|t−1) + κ2(xt−1 − xit−1|t−1).

where κ1 and κ2 denote the Kalman gains. An increase in σv reduces the Kalman gain weight
placed on the private signal, κ1. As σv rises, fluctuations in the current-quarter revision are
increasingly driven by lagged forecast errors, thereby strengthening the covariance between
the revision and the lagged error. In other words, with less informative private signals,
forecasters trust yit less and instead base more of their revisions on the news gleaned from
yesterday’s error.
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Figure C6: Comparative Statics

Note: Each panel displays a monotonic relationship between the parameter on the horizontal axis and a
given moment. The vertical axis measures the percent deviation of the given moment from its estimated
value in Table 5.
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Appendix D Estimation Results and Robustness

In this section, we detail estimation results reported in the main text and conduct a variety
of additional model-based exercises. Section D.1 reports the non-targeted fit of the base-
line model to consensus-level moments. Section D.2 augments our model with diagnostic
expectations to assess the relative importance of our mechanism in generating overreactions.
Section D.3 reports the estimates based SPF inflation forecasts, from which we obtain es-
timates of information frictions in Section 7. Section D.4 examines the role that rounding
plays in the parameter estimates. Section D.5, undertakes a sub-sample analysis, estimating
the baseline model before and after 1990. Finally, Section D.6 considers an alternative data
generating process for the underlying state.

D.1 Aggregate Underreactions

Whereas individual forecasters appear to overreact, consensus predictions exhibit underre-
action. This inertia at the aggregate level has been of interest to the literature studying
information rigidities. In this section, we explore the consensus-level analogs to the over-
reaction regressions in the main text and show that our baseline model is able to generate
these aggregate underreactions as well. Intuitively, while annual anchoring generates offset-
ting and overreactions at the forecaster level, the imperfect information environment allows
us to recover underreactions at the consensus level.

Table D10 reports ten moments in the data and the model-based counterparts. In general,
the baseline model is also able to successfully fit the majority of these moments.
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Table D10: Baseline Model Fit to Consensus Moments

Model Data

1. β(FECQ,FRCQ) 0.446 (0.070) 0.354 (0.178)
2. β(FE1Q,FR1Q) 0.569 (0.264) 0.676 (0.314)
3. β(FE2Q,FR2Q) -0.063 (0.532) 0.694 (0.374)
4. β(FE3Q,FR2Q) -0.794 (0.806) -0.464 (0.222)

5. β(FRCQ,FR1Q−1) 0.346 (0.152) 0.401 (0.112)
6. β(FR1Q,FR2Q−1) 0.042 (0.107) 0.448 (0.134)
7. β(FR2Q,FR3Q−1) -0.397 (0.075) 0.135 (0.109)
8. β(FEY Y, FRY Y ) 0.475 (0.148) 0.648 (0.275)

9. β(FEYY, Outcome) -0.066 (0.096) -0.077 (0.064)
10. β(FECQ,FECQ−1) 0.099 (0.067) 0.084 (0.074)

Note: The table reports consensus-level analogs to the simulated and empirical regression coefficients reported
in Table 6. Standard deviations and Newey-West standard errors are reported in parentheses. ‘FE’ refers to
forecast error, ‘FR’ refers to forecast revision, and ‘CQ, 1Q, 2Q, 3Q, YY’ refer to current quarter, one-quarter
ahead, two-quarters ahead, three-quarters ahead, and year-over-year, respectively.
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D.2 Diagnostic Expectations

Table D11 reports the parameter estimates for the unconstrained and constrained models.
These models are estimated by targeting the original eight moments listed in Table 5 as well
as the covariance of contemporaneous errors and revisions and the variance of contempo-
raneous errors. The unconstrained model estimates the annual smoothing plus diagnostic
expectations model. The constrained model estimates a version without diagnostic expecta-
tions.

Table D11: Model Estimation Results, Diagnostic Expectations

(1) (2)
Parameter Unconstrained Constrained

Persistence of latent state ρ 0.544 0.488
(0.058) (0.047)

State innovation dispersion σw 1.455 1.757
(0.178) (0.131)

Public signal noise σe 1.093 0.774
(0.200) (0.194)

Private signal noise σv 0.876 1.442
(0.260) (0.311)

Probability of quarterly update q 0.784 1.000
(0.102) (0.044)

Probability of annual update p 0.473 0.597
(0.042) (0.054)

Diagnosticity θ 0.501 0.000
(0.115) -

Note: The table reports parameter estimates of the model with and without diagnostic expectations. The
“Unconstrained” column refers to the full model with annual inattention and diagnostic expectations. The
“Constrained” column refers to the model with only annual inattention. Standard errors are reported in
parentheses.

Figure D7 plots the contributions of annual anchoring and diagnostic expectations to
measures of individual overreaction based on the unconstrained and constrained parameter
estimates reported in Table D11. This differs from Figure 4 in that the counterfactual in
Figure 4 features the same parameters as the unconstrained model, but with θ fixed at zero.
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Figure D7: Annual Smoothing vs. Diagnostic Expectation Contributions

Note: The figure plots the contributions of annual smoothing and diagnostic expectations, to three measures
of overreactions.
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D.3 Inflation Forecasts

Table D12 reports model estimates using SPF inflation forecasts based on the GDP deflator.

Table D12: Model Estimation Results, Inflation Forecasts (Deflator)

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.585 0.081
State innovation dispersion σw 1.041 0.072
Public signal noise σe 0.950 0.109
Private signal noise σv 0.566 0.149
Probability of quarterly update q 1.000 0.152
Probability of annual update p 0.552 0.084
Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 1.064 1.168 1.166
Correlation of nowcast with annual forecast 0.767 0.757 0.840
Standard deviation of annual forecast 0.773 0.806 0.632
Standard deviation of revision 0.908 1.118 1.775
Correlation of revision with lagged error 0.133 0.168 0.808
Standard deviation of lagged error 1.162 1.256 1.328
RMSE nowcast 1.174 1.257 1.424
RMSE annual forecast 0.748 0.819 1.167

Note: Panel A reports the model parameters with point estimates reported in the third column and standard
errors reported in the fourth column. Panel B reports the model vs. data moments with t-statistics reported
in the fourth column.
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D.4 Rounding

We report parameter estimates under the assumption that forecasters round their predictions
to the nearest 0.10 percentage point. We find that this rounding assumption does not
meaningfully change our parameter estimates.24

Table D13: Model Estimation Results (Rounding to nearest 0.1 pp)

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.401 0.034
State innovation dispersion σw 2.016 0.158
Public signal noise σe 0.816 0.353
Private signal noise σv 1.595 0.364
Probability of quarterly update q 0.997 0.129
Probability of annual update p 0.620 0.032
Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 1.656 1.719 -0.623
Correlation of nowcast with annual forecast 0.689 0.670 -0.211
Standard deviation of annual forecast 1.093 1.103 -0.178
Standard deviation of revision 1.573 1.615 -0.295
Correlation of revision with lagged error 0.242 0.143 1.603
Standard deviation of lagged error 1.644 1.720 -0.889
RMSE nowcast 1.657 1.677 -0.415
RMSE annual forecast 1.095 1.098 -0.100

Note: Panel A reports the model parameters with point estimates reported in the third column and standard
errors reported in the fourth column. Panel B reports the model vs. data moments with t-statistics reported
in the fourth column.

24Studying more traditional Gaussian measurement error introduces an identification problem between
the measurement error dispersion and private signal noise dispersion, σv. At the same time, rounding is a
well understood phenomenon in survey expectations. For this reason, we focus on this form of measurement
error.
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D.5 Sub-sample Analysis (Pre- and Post-2000)

The SPF, as well as broader macroeconomic dynamics, experienced important changes be-
tween 1981-2019. In this section, we estimate the model for two sub-periods: 1981-1999
(Table D14) and 2000-2019 (Table D15). Overall, we find that our headline conclusions hold
across the sub-samples with the estimated parameters differing across samples as expected.
For instance, we estimate the underlying state to be less persistent and more volatile in the
earlier period.

We can further validate these estimates by comparing them with empirical Bordalo et al.
(2020) coefficients over these sub-periods. When estimating the regression, we find that they
are more negative in the earlier sub-period. While our parameter estimates indicate that
q(1 − p) rises in the post-2000 period, this is largely because q is estimated to be higher,
not because p falls. Furthermore, as discussed in the main text, the BGMS coefficient, from
the lens of our model, depends on other model parameters. Of note, we estimate a much
higher persistence of the underlying process which can explain why we observe no evidence of
overreaction based on the BGMS coefficient in our post-2000 sub-sample. When simulating
these coefficients for the early and later sub-periods, we arrive at estimates of -0.21 and -0.13,
respectively.
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Table D14: Model Estimation Results (1981-1999)

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.335 0.089
State innovation dispersion σw 2.081 0.438
Public signal noise σe 1.366 0.709
Private signal noise σv 0.031 0.016
Probability of quarterly update q 0.778 0.318
Probability of annual update p 0.501 0.067
Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 1.798 2.003 -0.933
Correlation of nowcast with annual forecast 0.592 0.560 -0.790
Standard deviation of annual forecast 1.071 1.177 -0.870
Standard deviation of revision 1.704 2.146 -1.465
Correlation of revision with lagged error 0.067 0.083 -0.443
Standard deviation of lagged error 1.828 2.035 -1.159
RMSE nowcast 1.863 1.945 -1.056
RMSE annual forecast 1.240 1.300 -0.965

Note: Panel A reports the model parameters with point estimates reported in the third column and standard
errors reported in the fourth column. Panel B reports the model vs. data moments with t-statistics reported
in the fourth column.
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Table D15: Model Estimation Results (2000-2019)

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.624 0.035
State innovation dispersion σw 1.359 0.256
Public signal noise σe 1.129 0.308
Private signal noise σv 0.720 0.345
Probability of quarterly update q 1.000 0.121
Probability of annual update p 0.520 0.068
Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 1.388 1.538 -2.213
Correlation of nowcast with annual forecast 0.792 0.764 -1.040
Standard deviation of annual forecast 1.031 1.060 -0.555
Standard deviation of revision 1.152 1.225 -1.334
Correlation of revision with lagged error 0.155 0.218 -1.955
Standard deviation of lagged error 1.461 1.518 -1.269
RMSE nowcast 1.481 1.509 -0.641
RMSE annual forecast 0.960 0.969 -0.260

Note: Panel A reports the model parameters with point estimates reported in the third column and standard
errors reported in the fourth column. Panel B reports the model vs. data moments with t-statistics reported
in the fourth column.
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D.6 Alternative Data Generating Process

Whereas offsetting revisions can be an artifact of annual anchoring, these patterns could
also arise under a more general data generating process. If so, then we might be erroneously
attributing the empirical finding to annual anchoring. In this section, we provide results in
support of our mechanism under richer dynamics.

We extend our model to feature an AR(2) process for real GDP growth. We select an
AR(2) process for three reasons. First, we find that the AR(2) fits real GDP growth best
in the sense that it delivers the lowest information criteria.25 Second, an AR(2) is highly
feasible to estimate with the baseline SMM approach as it only adds one parameter to the
model. Third, an AR(2) allows us to remain consistent with others in the literature who
similarly examine richer data generating processes for their models (Bordalo et al., 2020).

The key modification relative to the baseline model detailed in the main text is that the
underlying latent state now evolves as follows:

st = (1− ρ1 − ρ2)µ+ ρ1st−1 + ρ2st−2 + wt, wt ∼ N(0, σ2
w)

where ρ1 and ρ2 govern the persistence of the state. We impose the usual assumptions on
these two parameters to ensure stationarity.

There are now seven parameters to be estimated. We estimate these parameters by
targeting the same eight moments described in the main text. As a result, our estimator is
still an overidentified SMM estimator. The results are reported in Table D16.

All the parameters are precisely estimated and the model fits the empirical moments well.
We estimate ρ1 > 0 and ρ2 < 0, indicating that AR(2) dynamics can potentially account
for some of the offsetting revisions in the data. With that said, we note that controlling for
adjacent revisions, there is still evidence of offsetting revisions over longer horizons. While
such patterns cannot arise with an AR(2) process, they can arise under annual anchoring.

The estimated dispersion parameters are similar to those in Table 5. The quarterly
updating probability is estimated to be slightly lower than the baseline estimates, while the
annual updating probability is estimated to be higher. Relative to Table 8, these estimates
imply roughly similar levels of information rigidity in quarterly and annual real GDP forecasts

25In this unreported exercise, we considered AR(2), AR(4), ARMA(1,1), ARMA(2,1) and ARMA(2,2)
models.
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Table D16: Model Estimation Results, AR(2)

Panel A: Parameter Estimates

Parameter Estimate Standard error

First lag autocorrelation ρ1 0.524 0.149
Second lag autocorrelation ρ2 -0.075 0.018
State innovation dispersion σw 1.828 0.231
Public signal noise σe 1.163 0.343
Private signal noise σv 1.002 0.418
Probability of quarterly update q 0.934 0.524
Probability of annual update p 0.618 0.045
Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 1.624 1.719 -0.926
Correlation of nowcast with annual forecast 0.702 0.670 -0.588
Standard deviation of annual forecast 1.057 1.103 -0.799
Standard deviation of revision 1.486 1.615 -0.882
Correlation of revision with lagged error 0.172 0.143 0.141
Standard deviation of lagged error 1.629 1.720 -1.060
RMSE nowcast 1.645 1.677 -0.661
RMSE annual forecast 1.077 1.098 -0.576

Note: Panel A reports the model parameters with point estimates reported in the third column and standard
errors reported in the fourth column. Panel B reports the model vs. data moments with t-statistics reported
in the fourth column.

(0.235 and 0.494, respectively based on (9)). The scope for overreactions, based on the
probability of Case 2 updating, q(1 − p), is approximately 15% lower in the AR(2) model
relative to the baseline AR(1) model.

70


	Introduction
	Overreaction at Quarterly and Annual Frequencies
	Data
	Quarterly Overreaction
	No Annual Overreaction
	Additional Evidence of Quarterly but not Annual Overreaction

	A Model of Offsetting Revisions
	Model Setup
	High Frequency Overreactions
	Analyzing the Model

	Model Estimation
	Estimation Results
	Non-targeted Moments
	Annual Anchoring by Macroeconomic Variable

	Incorporating Non-Rational Expectations
	Implications for Information Frictions
	Model-Implied Information Frictions
	Contributions of Sticky and Noisy Information

	Conclusion
	Empirics
	Quarterly-to-Annual Consistency in SPF Forecasts
	Sample selection
	Quarterly Forecasts
	Annual Forecasts
	Empirical Facts: Robustness

	Model
	Model Description
	Errors-on-Revisions Coefficient

	Estimation
	Identification

	Estimation Results and Robustness
	Aggregate Underreactions
	Diagnostic Expectations
	Inflation Forecasts
	Rounding
	Sub-sample Analysis (Pre- and Post-2000)
	Alternative Data Generating Process


