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“...the structure of the economy is constantly evolving in ways that are imperfectly understood

by both the public and policymakers...” Ben Bernanke (2007)

1 Introduction

Professional forecasts exhibit error predictability. Specifically, the covariance between ex-post er-

rors and ex-ante revisions is non-zero and can run in either direction. A negative covariance is

interpreted as an overreaction whereas a positive covariance is interpreted as an underreaction. At

the same time, macroeconomic and financial time series have been found to exhibit complex dynam-

ics such as stochastic volatility, structural breaks, and regime switching. Whereas existing models

of belief formation do not generally accommodate simultaneous over- and underreactions, I show

that these patterns can arise in an otherwise standard noisy information setting that incorporates

unobserved time-varying volatility and heterogeneous forecasting techniques.

Error predictability in the model arises due to updating mistakes committed by forecasters.

With unobserved volatility, the optimal weight to place on new information is not exactly known. In

addition, there are costs associated with devising quantitative predictions. For instance, producing a

forecast requires (computing) time and cognitive effort. To the extent that macroeconomic dynamics

vary in their complexity, it stands to reason that forecasters tailor their models to each time series.

Furthermore, subject to these costs, forecasters may select simpler misspecified models. Therefore

with time-varying volatility and heterogeneous forecasting models, revisions can hold predictive

power over errors, and the nature of this relationship can be variable-specific. In spite of this, my

framework is compatible with rationality in the sense that reported forecasts are optimal outcomes.

Survey data has traditionally been used to test theories of expectation formation. In this paper, I

make use of the Survey of Professional Forecasters (SPF) which provides a panel of multi-horizon

forecasts across several macroeconomic variables.1 In the data, over- and underreactions arise along
1Examples other than the SPF include the Livingston survey, the Michigan Survey of Consumers, the NY Fed

Survey of Consumer Expectations, Blue Chip forecasts, the ECB Survey of Professional Forecasters, and the daily
Focus Survey from the Central Bank of Brazil, among others.
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different dimensions. First, across levels of aggregation, consensus forecasts broadly exhibit under-

reactions while forecaster-level predictions tend to imply overreactions. Second, across variables

and forecasters, overreactions appear for some variables and underreactions for others. Both of

these facts have been previously documented in the literature. This paper offers a third empirical

fact: across variable, within forecaster, the same respondent appears to over- and underreact to

distinct macroeconomic variables.

The presence of simultaneous over- and underreactions prompts several fundamental questions

about belief formation. Are professional forecasters, presumably the most informed private agents

in the economy, rational? Alternatively, do behavioral biases govern the manner in which expec-

tations are formed? As policymakers increasingly pursue expectations-based policies such as for-

ward guidance, taking a step toward reconciling theories of expectations formation with the data is

of first-order importance.

Against this backdrop, I develop a noisy information model with unobserved time-varying

volatility. Rather than obtaining an exact solution to the optimal inference problem, forecasters

must approximate the posterior distribution. They may choose from a finite set of approximation

methods. The available methods vary in complexity, and adopting a given method is subject to a

cost that is increasing in forecasting model sophistication. Forecasters generate a prediction that

minimizes the sum of their mean squared errors and model adoption costs.

Importantly, some forecasters adopt suboptimal forecasting models to predict variables thereby

generating error predictability. I consider a stylized version of this unobserved volatility model in

which forecasters can select either a suboptimal Kalman filter or an asymptotically efficient particle

filter, the former being less costly to adopt than the latter.2 I find that the underlying signal-to-noise

ratio governs the extent to which over- and underreactions arise. Intuitively, the optimal weight to

place on new information is increasing in the time-varying signal-to-noise ratio. Predictions based

on the suboptimal model, however, erroneously update new information in a constant fashion. As a

result, forecasters will tend to underreact to variables for which the average signal-to-noise ratio is
2The particle filter is an asymptotically efficient approximation method. I provide further details on the filter in

Appendix D.
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high, and will overreact to variables for which the average signal-to-noise ratio is low. Put another

way, there are certain features inherent to a given macroeconomic time series that explain why

forecasters appear to either over- or underreact to that particular variable.

After providing simulation results that confirm the above intuition, I examine these implica-

tions in the data by exploiting the cross-section of macroeconomic variables for which forecasters

report predictions in the SPF. I then parameterize the stylized model and show that it can match a

quantitatively relevant share of simultaneous over- and underreactions. Taken together, my findings

demonstrate that time-varying volatility, coupled with costly forecast model adoption, can rational-

ize important features of survey expectations data.

In their seminal paper, Coibion and Gorodnichenko (2015), henceforth CG, make sense of fore-

cast error inefficiency while preserving the assumption of rationality. Using consensus-level data,

CG show that projecting ex-post forecast errors on ex-ante forecast revisions delivers an estimate

of information rigidity. More recently, many studies have used forecaster-level data to test for ra-

tionality.3 In doing so, much of this literature preserves the linearity assumption made in CG,

and ultimately rejects rational expectations even under imperfect information. To make sense er-

ror predictability at the forecaster-level while also matching the CG finding of underreactions at

the aggregate level, several theories of non-rational expectations have been proposed.4 My paper

relates to this strand of the literature in many ways, and provides an alternate interpretation of the

errors-on-revisions coefficient.

In a recent contribution, Kohlhas and Walther (2020) also examines simultaneous over- and un-

derreactions. The authors are able to explain overreaction to news coupled with underreaction on

average with a model of asymmetric attention. Although I ground over- and underreactions from

a slightly different empirical perspective, I view my paper as complementary to theirs. Whereas

my model is based on heterogeneity in the underlying volatility across state variables, Kohlhas and
3Examples include Bordalo et al. (2020), Fuhrer (2018), Dovern et al. (2015), Andrade and Bihan (2013), Broer

and Kohlhas (2019), Bürgi (2016).
4For instance Bordalo et al. (2020) rule out rationality in favor of diagnostic expectations. Other studies such as

Fuster et al. (2012) argue in favor of models featuring misperception at long horizons. Daniel et al. (1998) argues for
a model of overconfidence while Broer and Kohlhas (2019) present a model of relative overconfidence.
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Walther (2020) present a model of costly attention which delivers distinct signal precisions for dif-

ferent components of the state. In both cases, however, the underlying signal-to-noise ratio is the

relevant object that varies across variables or components.5 This paper is also related to Gabaix

(2018) which proposes a model in which agents over- and underreact due to misperceived persis-

tence of the data generating process. The focus of my model, however, is in how forecasters assess

volatility. Nonetheless, my model can in general speak to sources of misperceived persistence, for

example, unobserved structural breaks.

Moreover, the unobserved volatility noisy information model in this paper is in the spirit of

Branch (2004), Evans and Ramey (1992) and Brock and Hommes (1997) who define adaptively

rational equilibrium dynamics (ARED). Branch (2004) was the first to introduce this concept to ex-

pectations formation. My paper builds on his important insights in key ways. First, I present more

complex dynamics for the state variable. Introducing nonlinearities, such as stochastic volatility,

provides an even stronger justification for the use of different predictor functions. Second, I ex-

plicitly model heterogenous expectations through private information whereas in Branch (2004)

predictions are assumed to be homogeneous among all who adopt a specific predictor function.6

Taken together, my model is able to reproduce the empirical facts relating to simultaneous over- and

underreactions across level of aggregation, by variable across forecasters, and by variable within

forecaster.

While a discussion of nonlinearities has generally been absent in the survey expectations lit-

erature, the finance literature has previously tied nonlinear dynamics to error predictability. For

instance, Lewis (1989) considers error predictability concerning dollar forecasts in the context of

a structural break. Veronesi (2015) finds that over- and underreactions arise in a regime switching

model of asset pricing. More recently, Lansing et al. (2020) attribute the predictability of excess

returns to either volatility or deviations from rationality. To this end, my paper also relates to the

literature on volatility in macroeconomics.7

5Relatedly, Broer and Kohlhas (2019) present a model of over- and underreactions. The focus in this paper is to
match simultaneous over- and underreactions to endogenous public signals.

6Heterogeneity in this model comes from idiosyncratic “trembles" in the reported prediction.
7See for instance, Justiniano and Primiceri (2008), Kim and Nelson (1999), McConnell and Perez-Quiros (2000),
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Finally, due to the assumptions imposed on the state dynamics, this paper relates to the literature

on nonlinear filtering. Several approximation methods have been devised in order to deal with

nonlinearities in the evolution of a state variable. These methods include generalizations to Kalman

filtering as well as importance sampling algorithms, among others.8 A strand of this literature has

formalized some basic efficiency properties of particle filtering.9

The rest of the paper is organized as follows. Section 2 presents previously documented facts

about error predictability at the forecaster and consensus levels, as well as a novel fact pertaining

to simultaneous over- and underreactions. Section 3 presents the noisy information model subject

to unobserved time-varying volatility. Section 4 introduces a stylized version of the model and

provides simulation results. Section 5 documents empirical evidence consistent with the model.

Section 6 parameterizes the stylized model to show that it can generate within forecaster over- and

underreactions. Finally, Section 7 concludes.

2 Evidence from Survey Data

The SPF is a quarterly survey provided by the Federal Reserve Bank of Philadelphia. The survey

began in 1968Q4 and provides forecasts from several forecasters across a number ofmacroeconomic

variables over many horizons, h. The variables of interest in this paper are the forecast error and

the forecast revision. To construct forecast errors from forecaster i about variable x,

FEi
t+h,t = xt+h − xit+h|t,

I take the difference between the realized real-time value for x at t + h and the forecaster’s h-step

ahead prediction generated at time t. To compute forecast revisions, I exploit the term structure of

and Stock and Watson (2007)
8Julier andUhlmann (2004) develop aKalman filter for nonlinear settings while Doucet and Johansen (2009) discuss

particle filtering methods.
9See Crisan and Doucet (2002) and Hu et al. (2011)
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Table 1: Pooled OLS Forecast Error Predictability Regressions

Nowcast One-Quarter Ahead Two-Quarters Ahead

β1 α1 β1 α1 β1 α1

Estimate -0.317*** 0.569*** -0.231** 1.011*** -0.344*** 0.565**
(0.050) (0.128) (0.067) (0.201) (0.058) (0.272)

Observations 65,070 2,323 54,067 2,309 52,220 2,295

Note: The table reports the estimated coefficients of forecast error predictability at the current, one-, and two-quarter
ahead horizons. Across all horizons, column (1), refers to the forecaster-level errors-on-revisions regression. Column
(2) refers to the consensus-level errors-on-revisions regression. Standard errors for forecaster-level regressions are as in
Driscoll and Kraay (1998), while Newey-West standard errors are used for aggregate-level specifications. Data used for
estimation come from SPF. *** denotes 1% significance, ** denotes 5% significance, and * denotes 10% significance.

forecasts generated by the survey respondents

FRi
t,t−1 = xit+h|t − xit+h|t−1.

This requires making use of the h-step ahead forecasts formulated in periods t and t − 1. In other

words, I consider the fixed horizon, h and take the difference between two adjacent forecasts.

In the data, simultaneous over- and underreactions arise along different dimensions: across

level of aggregation, across SPF variables pooled over forecasters, and across SPF variables within

forecaster. CG present the following testable implication at the consensus-level which holds for an

arbitrary horizon:

FEt+h,t = α0 + α1FRt+h,t + εt. (1)

CG find that in the data, α1 > 0 for most variables which indicates that consensus forecasts under-

react to new information. More recently, Bordalo et al. (2020) estimate the same regression at the

forecaster-level:

FEi
t+h,t = β0 + β1FR

i
t+h,t + εit, (2)

and find that β1 < 0 for most macroeconomic series. The interpretation is that forecasters overreact

to new information.

Table 1 reports estimates of β1 and α1, using data from the SPF. The estimates are obtained
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Table 2: Pooled OLS Regressions at h = 0, by Variable

Variable Mnemonic β1 α1

Consumer price inflation CPI -0.085 0.868***
Employment EMP -0.123 0.564***
Housing starts HOUSING 0.063 0.359***
Industrial production IP -0.147* 0.513***
Nominal GDP NGDP -0.310*** 0.421**
GDP Deflator PGDP -0.363*** 0.350**
Real consumption RCONSUM -0.401*** 0.098
Real federal government spending RFEDGOV -0.483*** 0.377
Real GDP RGDP -0.264*** 0.350**
Real nonresidential investment RNRESIN -0.499** 0.362
Real residential investment RRESINV -0.234*** 0.925***
Real state/local government spending RSLGOV -0.660*** -0.381
3-month Treasury bill TBILL 0.010 0.178***
10-year Treasury bond TBOND 0.020 0.154***
Unemployment rate UNEMP 0.082** 0.247***

Note: The table reports the OLS coefficients from errors-on-revisions regressions across 15 macroeconomic variables
reported in the Survey of Professional Forecaters. Column (3) reports the coefficient in front of the revision at the
forecaster-level while column (4) reports the analogous coefficient using consensus-level data. The errors and revisions
are for current period forecasts (h = 0). All forecasts refer to growth rates with the exception of consumer price inflation
(CPI), 3-month treasury bill (TBILL), 10-year bond (TBOND), and unemployment rate (UNEMP). *** denotes 1%
significance, ** denotes 5% significance, and * denotes 10% significance.

via OLS regressions, pooling across both forecasters and macroeconomic variables. Estimates are

reported for three different horizons. Across all horizons considered, it is clear that overreactions

dominate at the individual-level, while underreactions arise at the aggregate-level.

However even at the forecaster-level there is evidence of simultaneous over- and underreactions

across macroeconomic variables. Table 2 reports variable-by-variable results for nowcasts (h =

0) at the forecaster- and consensus-levels. The results point to individual overreactions for most

variables but underreactions for some variables such as the unemployment rate.

These findings are neither driven by entry and exit among SPF forecasters, nor different fore-

casters systematically reporting predictions for select macroeconomic variables. Instead, the same

respondent simultaneously over- and underreacts to distinct macroeconomic variables. To show

this, I estimate regression (2) for each forecaster i forecasting a specific variable j. This delivers

an Ni × Nj matrix of estimates β̂1,ij . I keep only those estimates that are significant at the 5%
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level. I then fix a pair of SPF variables j and k, and compute the number of forecasters such that

β̂1,ij < 0 and β̂1,ik > 0, and normalize by the number of total forecasters reporting predictions

about variables j and k. More formally, I estimate a matrix P whose elements are pjk with

pjk =

∑
i 1

(
β̂1,ij < 0 and β̂1,ik > 0

)
min{Nj, Nk}

where Nx denotes the number of forecasters providing predictions of variable x and 1(·) is the

indicator function. The elements of matrix P , therefore, denote the share of forecasters who simul-

taneously overreact to the row variable and underreact to the column variable. When pjk is close to

one, this means that nearly all forecasters overreact to variable j and underreact to variable k. On

the other hand, when pjk is close to zero, then almost no forecaster overreacts to variable j while

also underreacting to variable k.

Figure 1 reports the results from this exercise. The heatmap verifies that a given forecaster

tends to overreact to some variables and underreact to others. For instance, 84% of professional

forecasters exhibit overreactions when forecasting growth in real gross domestic product (RGDP)

while simultaneously underreacting to information regarding inflation based on the consumer price

index (CPI).

In order to understand how individuals formulate these expectations, a theory of expectations

formation must take into account that a single agent may overreact and underreact to different vari-

ables. I propose a model of time-varying volatility and heterogeneity in forecasting models in order

to account for this fact.

3 Model

I begin with a simple regime switching example to highlight the intuition. I then proceed to develop

a generalized noisy information rational expectations model with unobserved time-varying volatil-

ity and heterogeneous forecasting methods. In the next section, I narrow my focus to a stylized
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Figure 1: Frequency of Over- and Underreaction

Note: The heatmap displays the share of forecasters who overreact to the row variable and simultaneously underreact
to the column variable.

version of this model which I later parameterize.

3.1 A Simple Model

Suppose that the state is described as follows:

st = wt wt ∼ N (0, σ2
t ),
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where

σ2
t =


σ2
L with probability q

σ2
H with probability 1− q.

The forecaster cannot directly observe the latent state st or its volatility σ2
t . More specifically, the

probability q is unknown. Instead, the forecaster receives a signal each period that is contaminated

with noise:

yt = st + vt vt ∼ N (0, σ2
v).

Since the state is i.i.d., the optimal weight to place on new information (the Kalman gain) is:

κt =
σ2
t

σ2
t + σ2

v

.

Without full knowledge of the probability q, the optimal weighting of new information is unknown.

Suppose that the forecaster finds it too time consuming or otherwise prohibitive to ascertain q.

Instead, the forecaster simply assess the state variance to be σ2 = 1
2
(σ2

L + σ2
H). The associated

Kalman gain is

κ =
σ2

σ2 + σ2
v

.

The resulting weighting error can be expressed as:

κt − κ =
[σ2
t − 1

2
(σ2

L + σ2
H)]σ2

v

[1
2
(σ2

L + σ2
H) + σ2

v ](σ
2
t + σ2

v)
.

When σ2
t = σ2

L, the weighting error is negative meaning that the forecaster puts undue weight on

his signal thereby overreacting. On the other hand, when σ2
t = σ2

H , the weighting error is positive

and the forecaster underreacts to new information.

Based on this simple example, the magnitude of the overreaction depends importantly on the
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signal-to-noise ratio. Noisier environments deliver more negative β1 coefficients. On the other

hand, underreactions arise when q is closer to zero (i.e., the underlying signal-to-noise ratio is

high). In this case, as the forecaster generates predictions, he believes the state to be less variable

than it truly is thereby placing less weight on news. This mutes the effects of signal noise and creates

more inertia in expectation formation than is optimal. The result is a more positive β1 coefficient.

The weighting errors in my model stem from: (i) unobserved volatility and (ii) incentives to

adopt parsimonious approximations of the volatility. With these two assumptions, over- and under-

reactions can arise depending on the underlying state dynamics. Assumption (ii) is crucial because

if forecasters could easily observe q, then there would be no need to approximate the variance of

the state. In this case, error orthogonality would hold despite the regime switching nature of the

variance. However, if adopting different forecasting models comes at a cost (be it cognitive, timing,

or otherwise), forecasters may find it optimal to make use of such approximations.

3.2 A Model of Unobserved Time-Varying Volatility

Having illustrated the basic intuition that delivers simultaneous over- and underreactions, I now turn

to presenting the general model. Nonlinearities such as time-varying volatility in the underlying

state complicates the forecaster’s problem as he must now formulate expectations about levels and

the volatilities. Supposing that there are n latent state variables andm exogenous signals, the state

and observations equations are:

st = F (st−1,wt) (3)

zi
t = Cst + Dvi

t,

where st is an n×1 vector, zt ism×1, C ism×n, D ism×m and vi
t ism×1. There are no other

restrictions placed on the model. In particular, st can be a vector of many different state variables,

or lags of itself. Furthermore, zi
t can include an arbitrary finite number of observed signals. The
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noise vector vi
t can include private or public noise.10

In a linear model, st = Ast−1 + Bwt. The crucial difference between a linear model and

this one is the unobserved time-varying covariance matrix Bt which implies an expanded state

space, st =
(
st diag(Bt)

)′. As a result, the error now enters multiplicatively into the state.

This nonlinearity is modeled by the function F (·) which governs the evolution of the state. While

the state now exhibits stochastic volatility, the shocks remain normal, and the signal structure is

unchanged. Hence, the measurement equation remains linear.11 12

Whereas Kalman filtering delivers an exact optimal solution in a linear Gaussian environment,

it is no longer optimal in this context. The reason for this is that the Kalman filter requires one to

evaluate the expected value of st conditional on the history of signals Z it = {zi
1, . . . , z

i
t}. This

is made intractable due to the lack of knowledge about the underlying conditional distribution.

To see this more clearly, consider the scalar case where the state is st and there is only a private

signal available to the forecaster, zit. The observation equation can be expressed as a conditional

likelihood, p(zit|st) and the state evolution as p(st+1|st). The optimal filter computes p(st|Z it) from

a predict-update procedure

p(st|Z it−1) =

∫
p(st|st−1)p(st−1|Z it−1)dst−1 (Predict)

p(st|Z it) =
p(zit|st)p(st|Z it−1)

p(zit|Z it−1)
(Update)

where p(zt|Zi
t−1) =

∫
p(zit|st)p(st|Zi

t−1)dst.

In a linear Gaussian environment, this can be exactly computed via the Kalman recursions.13 In

a nonlinear setting, however, computing p(st|Z it) is not feasible as the density cannot be obtained

analytically.

In light of this, forecasters must approximate the nonlinear state. I assume that this is done
10I index this vector by i in general to allow for forecaster-specific signals.
11This could be generalized to a nonlinear measurement as well. I abstract away from this for simplicity.
12While I consider stochastic volatility, any nonlinearity can deliver the results presented in the paper. In particular,

this model can also speak to unobserved changes in the persistence of macroeconomic time series.
13In particular, p(st|Zit) ∼ N (sit|t,Ψ

i
t|t), where s

i
t|t is the expected value of the posterior density and Ψi

t|t is the
variance.
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by selecting from a set of costly approximation functions, A ∈ A. Forecasters first select an ap-

proximation function so as to obtain an estimate of the posterior density of the underlying state.

Forecasters then report their predictions, the first moment of this approximated density. Hence, the

forecaster’s loss function can be defined as

L = min
A∈A

[(
zi
t+h − ẑi,A

t+h|t
)′(

zi
t+h − ẑi,A

t+h|t
)

+ ciA

]
, (4)

where the first term is the mean square error arising from individual i’s forecast which makes

use of approximation function A, and the second term denotes the cost associated with adopt-

ing approximation function A.14 I assume that these forecaster-specific costs are drawn randomly

ciA ∼ U(0, cA).15 This cost embodies unobserved heterogeneity among forecasters that result in the

use of different forecasting models.

After applying their approximations of the state, forecasters generate a prediction and an update

according to the new information received. Since agents are formulating a forecast subject to an

approximation of the state, I call these approximate predictions. An approximate prediction is

defined as

ŝ
i

t|t =

∫
st p̂(st|Z it) dst. (5)

In essence, the forecaster predicts the current state according to the approximated density p̂(st|Z it).

In a linear Gaussian setting, the density would be obtained exactly so that p̂(st|Z it) = p(st|Z it) and

errors would be orthogonal.

One can express the approximate prediction as a deviation from the optimal minimum mean

square error forecast

ŝ
i

t|t = E(st|Z it)︸ ︷︷ ︸
Optimal

+

∫
st[p̂(st|Z i

t)− p(st|Z i
t)]dst︸ ︷︷ ︸

Approximation error

. (6)

14Forecasters have knowledge of the mean square error associated with each A.
15One could alternatively assume heterogeneous signal precision. Models featuring heterogeneous signal-to-noise

ratios have been proposed in the literature, particularly to explain forecast disagreement.
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Figure 2: Scope for Over- and Underreaction
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Note: The figure illustrates the optimal Kalman gain (upward sloping curve) and the suboptimal Kalman gain (hori-
zontal line) as functions of the signal-to-noise ratio.

Whereas existing theories of expectation formation restrict the deviation from the optimal forecast

to be either positive (overreactions) or negative (underreactions), the direction of the error here is

unrestricted.

3.3 Scope for Over- and Underreaction

Error predictability is due to the presence of suboptimal models in the set A. Importantly, some

forecasters must select suboptimal approximations from this menu of models. A sufficient condition

for the presence of over- and underreactions is that some approximation A ∈ A involves a time-

invariant weight used to update new information which resides in the interval (0, 1).

Intuitively, the optimal weight to place on new information is increasing in the signal-to-noise

ratio. If a forecaster partially incorporates the most recent signal with a naive constant weight, then

the forecaster will overweight new information when signals tend to be imprecise, and will under-

weight new information when signals tend to be more precise. Figure 2 illustrates this intuition.

The gaps between the curve and the horizontal line reflect weighting errors. These weighting
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errors are made each period among those who choose the suboptimal constant-weight forecasting

model. The scope for underreaction rises with the signal-to-noise ratio.16

The constant weight assumption is made for the purpose of transparency. There are other fore-

casting techniques that could deliver misspecified time-varying weights which could deliver a sim-

ilar intuition to the one displayed in Figure 2.

Aggregate error predictability arises because the consensus revision does not reside in any fore-

caster’s information set. Appendix B proves that α1 ≥ β1 which implies that underreaction can

arise at the aggregate level. Aggregate unnderreactions arise in part due to aggregation, but also

because not all forecasters adopt suboptimal models in this noisy information environment.

3.4 Relation to Some Theories of Expectation Formation

Amid the mounting evidence against full information rational expectations, several theories of ex-

pectations formation have been proposed in the literature. Here, I consider a few prominent theories

and assess their ability to generate the empirical facts presented in Section 2.17

According to diagnostic expectations, forecasters over-weight new information according to

a parameter θ > 0 which ultimately governs the extent of overreaction. This parameter comes

from the representativeness heuristic of Tversky and Kahneman (1974). The diagnostic nowcast is

defined as:

xi,θt|t = xit|t + θ(xit|t − xit|t−1).

This theory makes use of a distorted Kalman filter called the diagnostic Kalman filter, which, as

shown in Bordalo et al. (2020), is able to generate β1 < 0 and α1 > 0. Because θ > 0, however,

this theory cannot accommodate underreactions. In other words, the sign restriction imposed on θ

implies that diagnostic errors and revisions always covary negatively.
16It is important to note that the optimal weight will vary along the curve according to the underlying stochastic

volatility. Ultimately, the optimal weight is a complicated function of the volatility and persistence of the state as well
as the noisiness of the signals, so the black curve is specific to the macroeconomic variable in question.

17I do not include a formal discussion of sticky information or linear noisy information models as their shortcomings
in this respect have already been documented in the literature. Appendix B provides some detail on why these popular
models are at odds with the data. In particular, they imply error orthogonality at the forecaster-level.
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Models of overconfidence also distort the Kalman gain. The distortion stemming from over-

confidence, however, is different. According to this theory, forecasters misperceive the precision of

their own signals. Suppose that forecasters observe only one private signal:

zit = st + vit, vit
i.i.d.∼ N (0, σ2

v),

but they perceive σ̃v < σv. Put another way, individual forecasters believe their own private signals

to be more precise than they truly are. This results in an erroneous assessment of the noise in the

system. Overconfident beliefs are recursive so that the distorted gain injects a bias to the update

in each period. These beliefs are then projected forward only to be further distorted by the over-

weighting of new information in the subsequent period. In other words, at an arbitrary point in time,

forecasters exhibit both a non-zero ex-ante forecast error as well as a weighting error. Models of

overconfidence can generate individual overreactions as well as aggregate underreactions, however,

overconfidence is similarly unable to generate individual underreactions.

Strategic interaction models can also generate error predictability. For instance, strategic sub-

stitution can drive errors and revisions in opposite directions. This is because forecasters have a

dual objective of not only minimizing their errors but also of distinguishing themselves from the

average forecast. These models differ from the previous two in that strategic interaction models are

rational. While this class of models can generate either overreaction or underreaction depending

on the strategic motive assumed, it is unable to jointly deliver β1 > 0 and β1 < 0.

Models of noisy memory, first introduced in Azeredo da Silvera and Woodford (2019), can also

generate overreactions. In a noisy memorymodel, forecasters do not have access to their full history

of signals due to finitememory capacity. Whilemodels of rational inattention can explain individual

underreactions, noisy memory may explain individual overreactions. Developing a hybrid rational

inattention-noisy memory model could plausibly deliver simultaneous over- and underreactions.

Several other theories of expectations formation have been found to be inconsistent with the

data. For instance, models of reputational concerns imply smoothing which can only generate
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underreaction. Moreover, asymmetric loss functions deliver counterfactually biased expectations,

whereas the data show that professional forecasts are not unconditionally biased.

4 Stylized Model

To extract further insight as to how time-varying volatility can generate over- and underreactions, I

consider next a stylized model of noisy information and unobserved volatility. I provide simulation

results that describe the source of over- and underreactions. In the subsequent section I document

cross-sectional evidence consistent with this mechanism.

4.1 Set Up

For simplicity, I suppose that forecasters can choose between two models: a Kalman filter (KF) and

a particle filter (PF). Forecasters utilizing KF ignore the stochastic volatility and assess only the un-

conditional volatility of the state when formulating predictions. By ignoring time-varying volatility,

forecasts based on the Kalman filter are suboptimal and generate error predictability among fore-

casters.

To reiterate, the Kalman gain is increasing in the signal-to-noise ratio, as illustrated in Figure 2.

In a world with stochastic volatility, the optimal weight placed on new information varies over

time. If the nature of the volatility were known in each period, then forecasters could update their

predictions efficiently according to the weights traced out by the curve. If one were to ignore the

time-varying volatility and filter with only the unconditional variance of the state, then he would

update according to the constant Kalman gain akin to the horizontal line in the figure.

The underlying state in the stylized model is described as follows:

st = ρst−1 + eht/2wt, wt ∼ N (0, 1) (7)

ht = φ0 + φ1ht−1 + σηηt, ηt ∼ N (0, 1).
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Furthermore, forecasters observe a contemporaneous private signal as well as a lagged public

signal18

yit = st + σvv
i
t, vit

i.i.d.∼ N (0, 1) (8)

xt−1 = st−1 + σeet−1, et−1 ∼ N (0, 1).

In addition to being unable to observe st, forecasters are also unable to observe ht. As such, the

innovation wt now enters into the state multiplicatively. Moreover, let zit =
(
yit xt−1

)′ denote the
vector of signals observed by forecasters.

Each period consists of two stages. In the first stage, a forecaster observes zi
t and selects an

approximation function. The use of these models comes at a random cost, ci ∼ U(0, c) such

that the PF cost distribution has a higher upper bound relative to KF. Then in the second stage,

given the predictor function and the history of signals Z it , the forecaster reports a prediction of the

public signal x̂it|t which is the macroeconomic variable in question.1920 For simplicity, I normalize

cKF = 0. With this in mind, forecasters minimize the following loss function:

L = min

[
MSEi

KF ,MSEi
PF + ciPF

]
, ciPF ∼ U(0, cPF ).

A forecaster will choose to make use of the more sophisticated PF if and only if

MSEi
KF −MSEi

PF ≥ ciPF . (9)

The lefthand side of the inequality reflects the benefit to adopting the PF, which manifests itself in

a lower mean square error, whereas the righthand side denotes the relative cost to adopting the PF.
18One can alternatively envision that forecasters observe a macroeconomic variable with a transitory (et) and per-

sistent (st) component. The persistent component is what is relevant for forecasting the target variable, though it is
unobserved.

19The public signal, x, is the SPF variable to be forecasted as it is an observable. The latent state, st, is unobserved
to the forecaster and the econometrician.

20At t, forecasters make use of their full history of signals in order to formulate a state estimate, ŝ
i

t|t. The first
element of the forecasted state vector is ŝit|t. Based on the assumption that xt = st + et, it follows that x̂it|t = ŝit|t.
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Table 3: Signal-to-Noise Ratio and Implied OLS Coefficients

Individual Aggregate SNR β1 α1

Underreaction Underreaction 1.40 0.12 0.46
Overreaction Underreaction 0.40 -0.14 0.18

Note: The table simulates the errors-on-revision coefficient at the forecaster-level (β1) and the consensus-level (α1) for
two different simulated signal-to-noise ratios (SNR).

The adoption cost embodies unobserved heterogeneity in model adoption. As previously described,

these reduced form costs can reflect heterogeneous time constraints among professional forecasters,

different levels of training or experience in forecasting techniques, institution-specific frictions that

make it more difficult to adopt a particular forecasting model, etc.

Fundamentally, this is a noisy information environment in which forecasters infer the state sub-

ject to private and public signals. Therefore, as in the simple model described in the previous

section, the sign of the covariance between errors and revisions depends on the underlying signal-

to-noise ratio. As the signal-to-noise ratio falls, forecast revisions are increasingly driven by the

noise in the system. In this case, it is as if forecasters report their predictions with measurement

error since an upward revision in the reported forecast will mechanically result in a more negative

forecast error. On the other hand, when the signal-to-noise ratio is high, then fluctuations in the un-

derlying state drive the forecast revisions. As a result, an upward revision delivers a more positive

forecast error.

4.2 Simulation Results

The simulation results reported in Table 3 confirm that the model is able to qualitatively explain

over- and underreactions across level of aggregation and variable. Differences across level of aggre-

gation are seen through differences in simulated individual errors-on-revisions coefficient (β1) and

its consensus analog (α1). Moreover, consider the difference in parameter values between models

of individual underreactions and models of individual overreactions. As the signal-to-noise ratio

20



Figure 3: Overreactions, Underreactions, and Driving Process

Note: The figure plots two simulated densities of β1 arising from a pooled individual-level errors-on-revisions re-
gression from the stylized model. The red dashed line plots the simulation in which private signal noise variance is
relatively high whereas the solid blue line plots the simulation in which private signal noise variance is relatively low.

(SNR) is reduced from 1.40 to 0.40, the sign of β1 changes.21 This result suggests that observed

over- and underreactions at the individual level can be explained by different underlying data gen-

erating processes.

I also plot the simulated β1 distribution across high signal-to-noise ratio and low signal-to-noise

ratio parameterizations. For each of 2,000 simulations, I generate a panel of 250 forecasters over

200 periods. I then collect the errors and revisions for these forecasters and compute β1. Figure 3

plots the density of β1 across the simulations. The results confirm that the model can generate error

predictability, and that over- and underreactions depend on the signal-to-noise ratio.22 I next turn
21Although robust and reliable estimates of the SNR are currently sparse in this literature, CG provide some estimates

using cross-country data which are in line with the simulated SNR values here. In addition, these simulated SNR values
are similar to those that I quantify in Section 6.

22If all forecasters made use of the particle filter, however, then in large samples we would expect this distribution to
be centered at zero.
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to the SPF data to document facts consistent with this mechanism.

5 Evidence from the Survey of Professional Forecasters

This section exploits variation across the macroeconomic variables reported in the SPF in order to

document evidence consistent with the idea that the signal-to-noise ratio is the key driver of over-

and underreactions. The next section will parameterize the model in order to speak to simultaneous

over- and underreactions within forecaster.

Each of the variables is presumed to follow a specific data generating process. As a result, β1 =

β1(ρ, σv, σe, φ0, φ1, ση) will, in general, vary in the cross-section of SPF variables. I document four

facts bymeasuring proxies for signal and noise. I find that variables exhibiting greater unconditional

volatility tend to be variables for which we observe underreactions. On the other hand, variables

that feature elevated amounts of noise are associated with observed overreactions.

Testable Prediction 1: Error Predictability and Private Noise

In the stylized model, forecasters revise their predictions according to the realization of the lagged

public signal as well as their contemporaneous private signal. The noise therefore feeds into the

forecast revision. From the perspective of the model, the variance of private signal noise determines

the amount of dispersion in revisions across forecasters. More dispersed signal noise admits more

pronounced cross-sectional differences in revisions.

With this insight, I collect the pooled β1 coefficients across SPF variables and plot these against

the interquartile range of revisions across forecasters for each variable. Figure 4 displays the results.

As themodel suggests, variables exhibiting greater dispersion in revisions tend to be those for which

forecasters overreact.
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Figure 4: Error Predictability and Revision Dispersion
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Note: For each SPF variable, the figure plots the estimated errors-on-revisions coefficient at the forecaster-level against
estimated private noise dispersion, proxied by the interquartile range of forecast revisions. Slope of fitted line is−0.045.

Testable Implication 2: Error Predictability and Public Noise

While Figure 4 relates β1 to private signal noise, there is also common noise present in the model.

I next turn to measure the noisiness of the public signal. Whereas the SPF variable of interest

has sometimes been modeled as the latent state in the literature, it is best thought of as a lagged

public signal. This is because the SPF variables are observed by all forecasters with a lag. With

this in mind, the official government revisions made to these variables across different vintages

can provide a partial measure of public signal noise. Assuming that the vintages following the

initial real-time release of the variable eliminate some of the common noise, one can quantify these

revisions over time. As a matter of notation, define xIt as the real-time initial data release for a given

variable, and xLt as the last release of the variable. Then, we can define noisepublict = Var(xIt − xLt ).

I construct this variable from the first and last data vintage for all SPF variables in my sample, and

then measure the dispersion of this public noise over time. Figure 5 relates β1 with this measure of
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Figure 5: Error Predictability and Public Noise
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Note: For each SPF variable, the figure plots the estimated errors-on-revisions coefficient at the forecaster-level against
estimated public noise dispersion, proxied by the standard deviation of government revisions to real-time data. Slope
of fitted line is −0.046.

public signal noise. The results are consistent with the intuition of the model: variables exhibiting

higher measured noise dispersion tend to deliver observed overreactions.

Testable Prediction 3: Error Predictability and Unconditional Volatility

Moreover, the model predicts that with more unconditional variability in the state, there is less

scope for overreaction. To test this, I proceed to estimate {φj,0, φj,1} for each SPF variable, j. I

then construct an estimate of unconditional volatility:23

volj = exp

(
φ̂j,0

2(1− φ̂2
j,1)

)
.

23I estimate the parameters of the stochastic volatiliity model, {φ0, φ1, ση} using MCMC techniques (Kastner and
Frühwirth-Schnatter, 2014).
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Figure 6: Error Predictability and Unconditional Volatility
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Note: For each SPF variable, the figure plots the estimated errors-on-revisions coefficient at the forecaster-level against

estimated unconditional volatility of the state, exp

(
φ̂j,0

2(1−φ̂2
j,1)

)
. Slope of fitted line is 0.100.

Figure 6 relates β1 to volj . The figure supports the hypothesis that variables exhibiting more vari-

ability in the state tend to provide greater scope for underreactions. Furthermore, note that the

variance of the state is increasing in ρ. Hence, the model predicts that more persistent variables

will reduce the scope for overreactions. This is consistent with Bordalo et al. (2020) who verify

this empirically.

Testable Prediction 4: Error Predictability and Release Frequency

As an additional way to measure signal precision, I consider the frequency with which these dif-

ferent variables are made available to the public. While professional forecasters report predictions

in each quarter, some variables are made available at higher frequencies. Specifically, the SPF

conducts its survey at roughly the middle of each quarter. However, some of the SPF variables
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are released at a monthly frequency. For instance employment statistics are released on the Friday

of each month. The survey asks forecasters to provide a quarterly average of these series. Fur-

thermore, the financial time series are available at a daily frequency. As a result, forecasters have

arguably more information pertaining to the eventual value of some variables in a given quarter than

others. This reduces the effective noise in the lagged public signal.24 Hence, variables available

at higher frequencies should raise the scope for underreaction. Note that this does not preclude

overreactive behavior in financial markets as has been readily documented. Here, I simply argue

that quarterly (average of daily observations) predictions of a financial variable are better informed

by the presence of daily observations through the middle of the quarter when the reported forecast

is requested. On the other hand, the latest information that forecasters have for quarterly variables,

such as GDP, is the previous quarter’s release and an advance estimate. Since there is additional

information available for some variables and not others, and the existence of this additional infor-

mation depends on the variable frequency, then it follows that there is more scope for underreaction

among variables that are available at higher frequencies. Figure 7 confirms this.

Jointly Testing for Overreaction and Underreaction Channels

As an additional check, I formally test for these channels jointly. For the data to accord with this

theory of expectations, it should be the case that an interaction of the forecast revision with each of

these variables either raises or reduces the extent to which β1 is negative in the pooled specification

(column 1 of Table 1). To complete this exercise, I incorporate two new regressors (and all possible

interactions), each capturing a source of either noise or state volatility. As a measure of noise, I

select the release frequency explained above. For my measure of fundamental volatility, I take a

factor analysis approach. Since the latent state and its volatility are unobservable, it is natural to

consider an index of the shared variation among all SPF variables. From this exercise, I obtain a

time-varying index of what I call fundamental volatility.25

24Alternatively, one could suppose that forecasters receive an additional informative public signal for daily ormonthly
SPF variables.

25For this analysis, I drop nominal GDP since its components reside in my data set. Furthermore, I exclude CPI
due to its shorter available history. For the remaining macroeconomic variables, I compute five-year rolling standard
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Figure 7: Error Predictability and Release Frequency
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Note: For each SPF variable, the figure plots the estimated errors-on-revisions coefficient at the forecaster-level against
variable’s release frequency {Daily,Monthly,Quarterly}.

Given these two new regressors, I modify the baseline errors-on-revisions regression (pooling

across all SPF variables as in Table 1). Specifically, in addition to projecting errors on revisions, I

specify a quarterly release indicator and the constructed fundamental volatility index. I also include

interactions of each of these with the forecast revision as well as all interactions with each other.

The regression results are reported in Table 4.

The first column of the table reproduces the first column of Table 1 for the relevant observations.

The second column reports the fully specified regression. The relationship of interest remains the

extent to which the forecast error and revision are related. The only interaction terms to enter

statistically significantly are those crossed with the forecast revision. Furthermore, the signs of

deviations and then estimate underlying principal factors. The results deliver two factors that explain roughly equal
amounts of the common variance of the final vintage of SPF variables. Based on the factor loadings, I call the first
factor a real residential factor, and the second a real non-residential factor (the residential factor loads highly on housing
and real residential investment whereas the second factor does not). While both factors deliver the correct sign in my
regression specification, I report the regression that specifies the real non-residential factor as it delivers statistically
detectable results. Appendix A confirms that the results are robust to window length.
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Table 4: Modified Forecast Error Predictability Regressions

Forecast Error
(1) (2)

Revision -0.314*** -0.165**
(0.0414) (0.073)

Revision × Quarterly -0.194**
(0.089)

Revision × Fundamental Volatility 0.106**
(0.041)

Observations 58,740 58,740

Note: The table reports estimated coefficients of forecast error predictability across two specifications. The Quarterly
indicator is equal to 1 if the SPF variable is released at a quarterly frequency and 0 otherwise. The Fundamental
Volatility variable is a time-varying index constructed as described in the text. In addition to the interactions reported
in the table, the column (2) specification includes the individual variables and their interactions as controls. Standard
errors are as in Driscoll and Kraay (1998). Data used for estimation come from SPF (1964Q4-2018Q3). *** denotes
1% significance, ** denotes 5% significance, and * denotes 10% significance.

these two interactions are consistent with the expected signs according to my theory of expectations

under unobserved time-varying volatility. In particular, noise raises the scope for overreactions as

evidenced by the negative cross term between the quarterly frequency indicator and the revision.

On the other hand, fundamental volatility reduces the scope for overreaction as seen by the positive

coefficients in front the volatility index and the revision.

The cross-sectional correlations and regression results reported above confirm that the model

mechanism is consistent with the SPF. In the next section, I parameterize the model in order to show

that it is also consistent with the extent to which a forecaster simultaneously over- and underreacts

to different variables as in the data.

6 Parameterization

The model is able to generate over- and underreactions across levels of aggregation and across vari-

ables, pooling over forecasters. In this section, I parameterize the stylized model for real GDP and

unemployment in order to demonstrate that it can also generate simultaneous over- and underreac-
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tions within forecaster.

Specifically, I calibrate the public noise dispersion, the persistence of the latent state, and the

stochastic volatility parameters {σe, ρ, φ0, φ1, ση}. I then find the values of cPF and σv that mini-

mize the distance between the model-simulated and empirical estimates of the errors-on-revisions

coefficients at the forecaster and consensus-levels (β1 and α1).

For real GDP and unemployment respectively, I set σe equal to the standard deviation of the

data revisions made to each variable over the sample period. The data revision is taken to be the

difference between the first and final release of the data series. For the remaining parameters, I

consider the revised data rather than the real-time data. Intuitively, these series should be more

highly correlated with the unobserved latent state. I then estimate an AR(1) on the revised series

and set ρ equal to the estimated AR(1) coefficient. Finally, I collect the squared residuals from

this autoregression and estimate {φ0, φ1, ση}. Panel A of Table 5 reports the calibration for each

variable.

I then parameterize σv and cPF by minimizing the distance between the model-implied {β1, α1}

from its empirical counterpart. Since I am calibrating these parameters for GDP and unemploy-

ment, the procedure amounts to searching a four-dimensional parameter space and matching four

moments. For each simulation, I generate two state variables according to the dynamics described in

Section 4. I then simulate the lagged public signal as well as the contemporaneous private signal for

each variable. In every period, forecasters report a forecast for each variable according to the state

dynamics, signals received, and loss function described in Section 5. From this simulated panel

of forecasters, I construct the errors-on-revisions coefficients. I minimize the distance between the

simulated and empirical OLS coefficients by making use of simulated annealing, a standard global

stochastic optimization routine.

The results, reported in Panel B of Table 5, indicate that real GDP is characterized by more

private signal noise than the unemployment rate. Furthermore, as shown in Panel C, the implied

signal-to-noise ratio for real GDP is about 0.50 whereas it is 1.36 for unemployment. This is consis-

tent with the intuition of the model as well as the cross-sectional evidence in the previous section:
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Table 5: Parameterization

Panel A: External
Parameter Description Unemployment Real GDP
ρ State persistence 0.98 0.30
σe Standard deviation of public noise 0.07 2.02
φ0 Level of log variance -0.76 0.14
φ1 Persistence of log variance 0.73 0.92
ση Volatility of log variance 0.69 0.39
Panel B: Internal
Parameter Description Unemployment Real GDP
σv Standard deviation of private noise 0.12 2.81
cPF PF cost upper bound 7.84 3.79
Panel C: Implied values

Description Unemployment Real GDP
Signal-to-noise ratio 1.36 0.50
Share using PF 0.53 0.82

Note: The table reports parameterization for unemployment and real GDP. Panel A reports the external parameteriza-
tion. The stochastic volatility parameters {φ0, φ1, ση} are estimated according to the algorithm presented in Kastner
and Frühwirth-Schnatter (2014). Panel B reports internal parameterization obtain through the minimum distance pro-
cedure described in the text. Based on this calibration, Panel C reports the implied signal-to-noise ratio and share of
forecasters that utilize the PF model.

variables that exhibit higher signal-to-noise ratios tend to be the variables for which underreactions

are observed.

In addition, the cost distribution parameters indicate that costs to implementing the particle filter

for real GDP are lower on average relative to the unemployment rate. The discrepancy between these

two cost parameters can be attributed to the fact that mean square errors in the data are much larger

in magnitude for real GDP. These costs govern in part the incentives to adopt the particle filter and,

as reported in Panel C, imply that roughly 82% of forecasters optimally select to forecast with the

particle filter for real GDP. On the other hand, 53% of forecasters choose the particle filter as the

forecasting model of choice for unemployment.

Table 6 reports the model fit. The minimum distance procedure was able to successfully match

patterns of over- and underreactions observed in the pooled forecaster-level and consensus regres-

sions for real GDP. Though the fit for unemployment is not as tight, the model can fairly closely

30



Table 6: Model Fit

Model Data
Unemployment
Errors-on-revisions, forecaster-level (β1) 0.149 0.082
Errors-on-revisions, consensus (α1) 0.212 0.247
Real GDP
Errors-on-revisions, forecaster-level (β1) -0.263 -0.264
Errors-on-revisions, consensus (α1) 0.352 0.350

Note: The table reports empirical and model-implied moments. The calibration directly targets the errors-on-revisions
moments for unemployment and real GDP at the forecaster and consensus-levels. The final row reports the share of
forecasters that overreact to real GDP and simultaneously underreact to unemployment.

match the consensus-level coefficient and can qualitatively match the forecaster-level coefficient.

Lastly, I assess the calibrated model’s ability to match untargeted moments. Table 7 reports the

mean square error, standard deviation of errors, and the share of over- and underreaction. Although

themodel generally overstates themean square error, it successfullymatches the relativemagnitudes

across both variables. Furthermore, the model is broadly successful in matching the dispersion of

forecast errors. Lastly, the stylized model is able to successfully match the share of simultaneous

over- and underreactions. Figure 1 reports that about 64% of forecasters in the sample overreact

to real GDP while simultaneously underreacting to unemployment. Based on the parameterization

devised here, the stylized model 63% of simulated forecasters overreact real GDP and underreact

to unemployment.

6.1 Implications for Information Rigidities

What does time-varying volatility coupled with noisy information imply about interpreting the co-

efficient α1 as an information rigidity? Based on my model, it is apparent that α1 does not cleanly

map to the Kalman gain as it does in the scalar linear context.26 The key intuition of Bayesian fil-

tering, however, still holds, and the optimal weight placed on innovation errors remains a sufficient
26See Appendix B.
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Table 7: Untargeted Moments

Unemployment Real GDP
Mean square error
Model 0.107 7.150
Data 0.045 6.005
Standard deviation of forecast error
Model 0.320 2.670
Data 0.209 2.451
Share that overreact to real GDP
and underreact to unemployment
Model 0.632
Data 0.641

Note: The table reports empirical and model-implied moments. The calibration directly targets the errors-on-revisions
moments for unemployment and real GDP at the forecaster and consensus-levels. The final row reports the share of
forecasters that overreact to real GDP and simultaneously underreact to unemployment.

statistic for capturing the rate of learning. This weight depends on the covariances of the state es-

timation error and the measurement error. Quantifying the rate of learning, however, is not readily

feasible from a projection of mean errors on mean revisions as has traditionally been suggested in

the literature (Coibion and Gorodnichenko, 2015; Dovern et al., 2015; Larsen et al., 2020).

In fact, from the perspective of the stylized model, the coefficient coming from errors on revi-

sions regressions at the consensus-level may reveal misleading insights on the extent of information

rigidity. Whereas a large α1 coefficient would typically imply more information rigidities, here, α1

is larger when the signal-to-noise ratio is high. On the other hand, a negative α1 arises when signals

are less informative. This suggests that the reduced form coefficient α1 may be limited in what it

reveals about genuine information frictions.

6.2 Implications for State Dependence

What does this mean for state dependence? If β1 and α1 were to rise in recessions, then the model

would imply that the signal to noise ratio is countercyclical and information rigidities fall during
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economic downturns. If, on the other hand, these coefficients fall, then the signal-to-noise ratio is

procyclical and information rigidities actually rise in recessions. CG document evidence indicating

that α1 falls in recessions. They interpret this as a reduction in information rigidities, however, my

model would suggest that this implies a rise in information rigidities since it implies that the system

experiences elevated amounts of noise. This is an important distinction between my model and the

extant literature as it delivers an opposite answer to the question of whether individuals trust their

signal more or less in recessions.

However, after performing a similar exercise to that in Table 4 by interacting a quarterly reces-

sion indicator with forecast revisions, I find no evidence that β1 or α1 changes with the business

cycle. I also run this exercise by replacing the recession indicator with revised real GDP growth.

It is possible, however, that the signal-to-noise ratio is insensitive to business cycle fluctuations

because both the state and the signal experience stochastic volatility. I abstract away from volatility

in signal precision, so there is a limit as to what one could glean from this model as it pertains to

state dependence of information rigidities.

Nonetheless, one could distinguish between two types of uncertainty: fundamental uncertainty

and information uncertainty. The first maps to time-varying volatility in the state while the latter

arises when signal noise experiences stochastic volatility. There is a literature that stresses the

importance of uncertainty shocks. These are often modeled as fundamental uncertainty shocks.

Shocks to information precision are also studied in the literature (Dun Jia, 2016). According to my

model, the state dependence of β1 and α1 depend on the signal-to-noise ratio which in turn depends

on how these two types of uncertainty evolve relative to one another over the business cycle. If both

rise in recessions, then is possible that the signal-to-noise ratio is acyclical thereby rendering β1

and α1 roughly constant over the cycle as well.
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7 Conclusion

This paper documents that individual forecasters appear to simultaneous over- and underreact to

new information. Existing models of belief formation are unable to flexibly accommodate these

empirical patterns. This paper shows that a noisy information model incorporating unobserved

time-varying volatility can make sense of these facts. Forecasters optimally select different models

based on the complexity of the state dynamics. Heterogeneity in predictor functions can jointly

deliver coincident over- and underreactions among forecasters. In particular, forecasters overreact

to variables that exhibit more noise whereas they underreact to variables that are characterized

by less noise. I uncover evidence in favor of this mechanism, demonstrating that fluctuations in

volatility matter for belief dynamics.

34



References

Andrade, Philippe and Herve Le Bihan (2013), “Inattentive Professional Forecasters.” Journal of

Monetary Economics, 60, 967–982.

Azeredo da Silvera, Rava and Michael Woodford (2019), “Noisy Memory and Overreaction to

News.” NBER Working Paper 25478.

Bordalo, Pedro, Nicola Gennaioli, Yueran Ma, and Andrei Shleifer (2020), “Overreaction in

Macroeconomic Expectations.” American Economic Review, 110, 2748–2782.

Branch, William (2004), “The Theory of Rationally Heterogeneous Expectations: Evidence from

Survey Data on Inflation Expectations.” The Economic Journal, 114, 592–621.

Brock,WilliamA. andCarsH.Hommes (1997), “ARational Route to Randomness.”Econometrica,

65, 1059–1095.

Broer, Tobias and Alexandre Kohlhas (2019), “Forecaster (Mis-)Behavior.” Working Paper.

Bürgi, Constantin (2016), “What Do We Lose When We Average Expectations?” Working Paper.

Coibion, Olivier and Yuriy Gorodnichenko (2015), “Information rigidity and the expectations for-

mation process: A simple framework and new facts.” American Economic Review, 109, 465–

490.

Crisan, Dan and Arnaud Doucet (2002), “A Survey of Convergence Results on Particle Filtering

Methods for Practitioners.” IEEE Transactions on Signal Processing, 50, 736–746.

Daniel, Kent, David Hirshleifer, and Avanidhar Subrahmanyam (1998), “Investor Psychology and

Security Market Under- and Overreactions.” Journal of Finance, 53, 1839–1885.

Doucet, Arnaud and Adam M. Johansen (2009), “A Tutorial on Particle Filtering and Smoothing:

Fifteen Years Later.” Handbook of Nonlinear Filtering.

35



Dovern, Jonas, Ulrich Fritsche, Prakash Loungani, and Natalia Tamirisa (2015), “Information

Rigidities: Comparing Average and Individual Forecasts for a Large International Panel.” In-

ternational Journal of Forecasting, 31, 144–154.

Driscoll, John C andAart CKraay (1998), “Consistent CovarianceMatrix Estimationwith Spatially

Dependent Panel Data.” The Review of Economics and Statistics, 80, 549–560.

Dun Jia, Calvin (2016), “Disagreement vs. Uncertainty: Investment Dynamics and Business Cy-

cles.” Working Paper.

Evans, George W. and Garey Ramey (1992), “Expectation Calculation and Macroeconomic Dy-

namics.” American Economic Review, 82, 207–224.

Fuhrer, Jeff (2018), “Intrinsic Expectations Persistence: Evidence fromProfessional andHousehold

Survey Expectations.” Working Paper.

Fuster, Andreas, Benjamin Hebert, and David Laibson (2012), “Natural Expectations, Macroeoc-

nomic Dynamics, and Asset Pricing.” NBER Macroeconomics Annual, 26, 1–48.

Gabaix, Xavier (2018), “Behavioral Inattention.” Handbook of Behavioral Economics.

Hu, Xiao-Li, Thomas B. Schon, and Lennart Ljung (2011), “A General Convergence Result for

Particle Filtering.” IEEE Transactions on Signal Processing, 59, 3424–3429.

Julier, Simon J. and Jeffrey K. Uhlmann (2004), “Unscented filtering and nonlinear estimation.”

IEEE Transactions on Signal Processing, 92, 401–422.

Justiniano, Alejandro and Giorgio E. Primiceri (2008), “The Time Varying Volatility of Macroe-

conomic Fluctuations.” American Economic Review, 98, 604–641.

Kastner, Gregor and Sylvia Frühwirth-Schnatter (2014), “Ancillarity-Sufficiency Interweaving

Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models of the Busi-

ness Cycle.” Computational Statistics and Data Analysis, 76, 408–423.

36



Kim, Chang-Jin and Charles Nelson (1999), “Has the U.S. Economy Become More Stable? A

Bayesian Approach Based on a Markov-Switching Model of the Business Cycle.” Review of

Economics and Statistics, 81, 608–616.

Kohlhas, Alexandre N. and Answer Walther (2020), “Asymmetric Attention.” Working Paper.

Lansing, Kevin J., Stephen F. LeRoy, and Jun Ma (2020), “Examining the Sources of Excess Re-

turn Predictability: Stochastic Volatility or Market Inefficiency?” Federal Reserve Bank of San

Francisco Working Paper 2018-14.

Larsen, Vegard H., Leif Anders Thorsrud, and Julia Zhulanova (2020), “News-driven inflation ex-

pectations and information rigidities.” Journal of Monetary Economics (Forthcoming).

Lewis, Karen (1989), “Changing beliefs and systematic rational forecast errors with evidence from

foreign exchange.” American Economic Review, 99, 769–803.

McConnell, Margaret M. and Gabriel Perez-Quiros (2000), “Output Fluctuations in the United

States: What Has Changed Since the Early 1980’s?” American Economic Review, 90, 1464–

1476.

Stock, James and Mark Watson (2007), “Why has U.S. Inflation Become Harder to Forecast?”

Journal of Money, Credit and Banking, 39, 4–33.

Tversky, Amos and Daniel Kahneman (1974), “Judgment under Uncertainty: Heuristics and Bi-

ases.” Science, 185, 1124–1131.

Veronesi, Pietro (2015), “Stock Market Overreactions to Bad News in Good Times: A Rational

Expectations Equilibrium Model.” The Review of Financial Studies, 12, 975–1007.

37



Appendix A Empirics

A.1 SPF: Variable Descriptions

While the paper focuses on inflation forecasts based on the GDP deflator, in this subsection I report

additional results that make use of several other variables. Before presenting these results, I provide

the variable descriptions below:

• NGDP–Quarterly nominal GDP growth forecast (seasonally adjusted, annual rate). Prior to

1992, these are forecasts for nominal GNP.

• RGDP–Quarterly real GDP growth forecast (seasonally adjusted, annual rate).

• PGDP–Quarterly GDP price index growth forecast (seasonally adjusted, annual rate). From

1992 - 1995, GDP implicit deflator is used, and prior to 1992, GNP implicit deflator.

• UNEMP–Forecasts for the quarterly average unemployment rate (seasonally adjusted, average

of underlying monthly levels).

• EMP–Quarterly average growth of nonfarm payroll employment (seasonally adjusted, aver-

age of underlying monthly levels).

• RNRESIN–Quarterly growth forecast of real nonresidential fixed investment. Also known as

business fixed investment (seasonally adjusted, annual rate).

• RRESINV–Quarterly growth forecast of real residential fixed investment (seasonally adjusted,

annual rate).

• TBILL–Quarterly forecast of average three-month Treasury bill rate (percentage points, av-

erage of underlying daily levels).

• HOUSING– Quarterly growth forecast of average housing starts (seasonally adjusted, annual

rate, average of underlying monthly levels).
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• CPI–Quarterly forecasts of the headline CPI inflation rate (percentage points, seasonally ad-

justed, annual rate). Quarterly forecasts are annualized q/q percent changes of quarterly av-

erage price index level (average of underlying monthly levels).

• RCONSUM – Quarterly growth forecast of real personal consumption expenditures (season-

ally adjusted, annual rate).

• RFEDGOV –Quarterly growth forecast of real federal government consumption and gross

investment (seasonally adjusted, annual rate).

• INDPROD – Quarterly forecasters of level of the index of industrial production, seasonally

adjusted (quarterly forecasts are for quarterly average of underlying monthly levels).

• TBOND–Quarterly average 10-year Treasury bond rate (percentage points, average of the

underlying daily levels). the underlying daily levels

• RSLGOV–Quarterly growth forecast of real state and local government consumption and

gross investment (seasonally adjusted, annual rate).
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Figure A1: Real-Time Macroeconomic Time Series
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Figure A2: Real-Time Macroeconomic Time Series
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A.2 Modified Error Predictability Regressions (Robustness)

This subsection reports the robustness results for the modified regressions in Section 5 of the main

text. TableA1 reports the results by defining 7-year year windows for the rolling standard deviations.

Table A2 reports the results from a 10-year rolling window specification.

Table A1: Modified Forecast Error Predictability Regressions (7
Year Window)

Forecast Error
(1) (2)

Revision -0.308*** -0.136*
(0.052) (0.071)

Revision × Quarterly -0.194**
(0.090)

Revision × Fundamental Volatility 0.093**
(0.040)

Observations 58,739 58,739

Note: The table reports estimated coefficients of forecast error predictability across two specifications. The variable
Quarterly is equal to 0 if the SPF variable is released at a non-quarterly frequency and 1 otherwise. The Fundamental
Volatility variable is a time-varying index of fundamental volatility constructed as described in the text. Column (1)
reports a simple regression of errors-on-revisions while columns (2) includes the two proxies described. In addition
to the variables reported in the table, column (2) includes the proxies individually as well as all of their interactions .
Standard errors for forecaster-level regressions are as in Driscoll and Kraay (1998). Data used for estimation come from
SPF (1964Q4-2018Q3). *** denotes 1% significance, ** denotes 5% significance, and * denotes 10% significance.
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Table A2: Modified Forecast Error Predictability Regressions (10-
Year Window)

Forecast Error
(1) (2)

Revision -0.278*** -0.143**
(0.053) (0.071)

Revision × Quarterly -0.209**
(0.091)

Revision × Fundamental Volatility 0.118**
(0.036)

Observations 48,827 48,827

Note: The table reports estimated coefficients of forecast error predictability across two specifications. The variable
Quarterly is equal to 0 if the SPF variable is released at a non-quarterly frequency and 1 otherwise. The Fundamental
Volatility variable is a time-varying index of fundamental volatility constructed as described in the text. Column (1)
reports a simple regression of errors-on-revisions while columns (2) includes the two proxies described. In addition
to the variables reported in the table, column (2) includes the proxies individually as well as all of their interactions .
Standard errors for forecaster-level regressions are as in Driscoll and Kraay (1998). Data used for estimation come from
SPF (1964Q4-2018Q3). *** denotes 1% significance, ** denotes 5% significance, and * denotes 10% significance.

Appendix B Model

B.1 General Linear Noisy Information RE Model

Theories of linear rational expectations are unable to account for over- and underreactions. Full

information rational expectations counterfactually imply that errors are unpredictable. In addition,

models of sticky information imply that forecast errors and forecast revisions are unrelated at the

forecaster level.27 In this sub-section, I focus on a general linear rational expectations model and

provide analytical results about error predictability.

Consider a linear Gaussian state space model. Suppose there are n latent state variables andm
27If a forecaster updates, he does so with full information rational expectations so that the subsequent error is unre-

lated to the revision. On the other hand, if the forecaster does not update, then there is no revision.
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exogenous signals.

st = Ast−1 + Bwt (10)

zi
t = Cst + Dvi

t

Note that st is an n× 1 vector, A is n× n, B is n× n and wt is n× 1. Furthermore, zt ism× 1,

C is m × n, D is m × m and vi
t is m × 1. There are no other restrictions placed on the model.

In particular, st can be a vector of many different state variables, or lags of itself. B need not be a

diagonal matrix. Furthermore, zi
t can include an arbitrary finite number of observed signals. The

noise vector vi
t can include private or public noise.28

From the Kalman filter, the optimal state estimate is defined as

sit|t = sit|t−1 + κ(zi
t − zi

t|t−1) (11)

where κ is the (constant) Kalman gain. Since the state is unobservable, forecasters can only formu-

late predictions of the signals and assess the mistakes made with regard to these observables. The

optimal forecast of the signal vector zi
t is

zi
t+1|t = zi

t+1|t−1 + CAκ(zi
t − zi

t|t−1) (12)

Forecast errors for the generalized linear model can be expressed as follows

zi
t+1 − zi

t+1|t = (zi
t+1 − zi

t+1|t−1)−CAκ(zi
t − zi

t|t−1) (13)

Furthermore, the forecast revision is

zi
t+1|t − zi

t+1|t−1 = CAκ(zi
t − zi

t|t−1) (14)

28I index this vector by i in general to allow for forecaster-specific signals.
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Using these expressions, one can derive the two testable implications presented in the main text.

Proposition 1. The generalized linear model implies the following:

(i) β1 = 0

(ii) α1 = CA(I−Cκ)(κC)−1(CA)−1 > 0

Proof. We have the following expressions for forecast errors and revisions, respectively:

FEi = CA(I− κC)(st − sit|t−1) + CBwt+1 + Dvi
t+1 −CAκDvi

t

FRi = CAκDvi
t + CAκC(st − sit|t−1)

Then,

(a) β1 ∝ Cov(FEi, FRi) = CA(I− κC)Ψ(CAKC)′ −CAK(Dvi
tv

i
tD)(CAκ)′

where Ψ denotes the state estimation error variance. This becomes

β1 ∝ CA(I − κC)Ψ(CAκC)′ − CAK(Dvitv
i
tD)(CAκ)′

= CA

{
(I − κC)ΨC − κDvitvitD

}
(CAκ)′

β1 = 0

because the term in brackets is zero by the definition of the Kalman gain.

(b) Denoting FE and FR as the cross-sectional mean of the forecast error and revision, respec-

tively, we have

α1 ∝ Cov(FE,FR) = CA(I − κC)Ψ(CAκC)′

The variance of the average revision is Var(FR) = CAκCΨ(CAκC)′ Thus, we have

α1 = CA(I − κC)(CAκC)−1
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The proofs are straightforward: (a) holds given the orthogonality condition that must be satis-

fied at the individual-level under rational expectations. Forecast error orthogonality implies that

E
[
(zi

t − zi
t|t)µ

]
= 0 for any µ residing in the forecaster’s information set.29 Put another way, ra-

tionality implies the optimal use of information so that no variable residing in one’s information

set may predict the forecast error. This very general model precludes the predictability of forecast

errors at the individual-level. As a result, any such linear Gaussian model with mean square loss

cannot generate error predictability, regardless of the signal structure.

Moreover, (b) is a generalization of the CG result. The extent towhich themean revision predicts

mean errors is determined by the Kalman gain matrix and the matrix C which maps the underlying

state to the observed signal vector. The generalized linear model nests the CG result. Letting

C = 1, D = σv, A = ρ and B = σw, it follows that α1 = 1−κ
κ
. In this limiting case, one can

recover an estimate of information rigidity by projecting consensus errors on consensus revisions.

Importantly, the signal structure must be such that C = 1. If, instead, the elements of C include

additional parameters, or there is common noise in the signal vector, then it is no longer possible

to cleanly extract an the Kalman gain from a standard OLS regression.30

As a result, a highly generalized linear rational expectations model is unable to explain the

patterns in the data.
29Similarly, there is a revision orthogonality condition implied by rationality which states that

E(zit|t − zit|t−1)|Iit) = 0. See Pesaran and Weale (2006).
30See CG for a discussion of the bias in estimated information rigidities induced by public noise.
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B.2 Error Predictability Under Time-Varying Volatility

From the general nonlinear model described in the main text, the covariance of errors and revision

can be signed as follows:

β1 ∝ C

(
st,

∫
st[p̂(st|Z i

t)− p̂(st|Z i
t−1)]dst

)
− C

(∫
stp̂(st|Z i

t)dst,

∫
st[p̂(st|Z i

t)− p̂(st|Z i
t−1)]dst

)

When there are no approximation errors, error orthogonality holds and β1 = 0. In the case

of non-zero approximation errors, however, the first term is the source of observed underreaction

while the second term governs the extent of overreaction. When forecast revisions are more closely

related to the underlying state, then underreactions arise as the first term dominates the second. If

instead, forecast revisions covary more with the current prediction than the underlying state, then

overreactions result. In essence, when the approximate revision incorporates more noise than is

optimally called for, then forecasters will overreact.

Similar to the approximate prediction defined above, the consensus forecast arising from ap-

proximate predictions is defined as follows

α1 ∝ C

(
st,

∫ ∫
st

[
p̂(st|Z i

t)− p̂(st|Z i
t−1)

]
dstdi

)
− C

(∫ ∫
stp̂(st|Z i

t)dstdi,

∫ ∫
st

[
p̂(st|Z i

t)− p̂(st|Z i
t−1)

]
dstdi

)

More volatile revisions increase the scope for overreaction. Upon aggregating (symmetrically)

across several individual forecasts, the consensus revision will exhibit more persistence than the

individual revisions. This motivates the following result

Proposition 2. In the nonlinear noisy information model, α1 ≥ β1.
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Proof. Recall that

α1 = [(ẑt+h|t − ẑt+h|t−1)
′(ẑt+h|t − ẑt+h|t−1)]

−1(ẑt+h|t − ẑt+h|t−1)
′(zt+h − ẑit+h|t)

and

β1 = [(ẑit+h|t − ẑit+h|t−1)
′(ẑit+h|t − ẑit+h|t−1)]

−1(ẑit+h|t − ẑit+h|t−1)
′(zt+h − ẑit+h|t)

To prove the proposition, I will show that the covariance between consensus errors and revisions is

weakly greater than that for pooled errors and revisions. I will then show that the variance of the

consensus revision is weakly smaller than the variance of the pooled variance.

We can express the covariance between errors and revisions as

C(zt+h − ẑit+h|t, ẑ
i
t+h|t − ẑit+h|t−1) =

∫ ∫
(zt+h − ẑit+h|t)(ẑ

i
t+h|t − ẑit+h|t−1)didt

−
∫ ∫

(zt+h − ẑit+h|t)didt−
∫ ∫

(ẑit+h|t − ẑit+h|t−1)didt

and at the consensus level

C(zt+h − ẑt+h|t, ẑt+h|t − ẑt+h|t−1) =

∫ (
zt+h −

∫
ẑit+h|tdi

)(∫
[ẑit+h|t − ẑit+h|t−1]di

)
dt

−
∫ (

zt+h −
∫

ẑit+h|tdi

)
dt−

∫ ∫
(ẑit+h|t − ẑt+h|t−1)didt

Wewish to show that the second equation is weakly greater than the first. One can note immediately

that the second and third terms of both equations are equal (given the linearity of the expectations

operator), and so they cancel out. The resulting inequality that we wish to verify is

∫ (
zt+h −

∫
ẑit+h|tdi

)(∫
[ẑit+h|t − ẑit+h|t−1]di

)
dt ≥

∫ ∫
(zt+h − ẑit+h|t)(ẑ

i
t+h|t − ẑit+h|t−1)didt
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By distributing the revision into the error on either side of the inequality, we can express each side

as the sum of two terms. The first of these will drop out as we will have

∫
zt+h

(∫
[ẑit+h|t − ẑit+h|t−1]di

)
dt

on the LHS and ∫ ∫
zt+h(ẑ

i
t+h|t − ẑit+h|t−1)didt

on the RHS. Again, due to the linearity of the expectations operator, these terms cancel out. The

remaining inequality is therefore

−
∫ (∫

ẑit+h|tdi

)(∫
[ẑit+h|t − ẑit+h|t−1]di

)
dt ≥ −

∫ ∫
ẑit+h|t(ẑ

i
t+h|t − ẑit+h|t−1)didt∫ (∫

ẑit+h|tdi

)(∫
[ẑit+h|t − ẑit+h|t−1]di

)
dt ≤

∫ ∫
ẑit+h|t(ẑ

i
t+h|t − ẑit+h|t−1)didt∫ (∫

ẑit+h|tdi

)2

dt−
∫ (∫

ẑit+h|tdi

)(∫
ẑit+h|t−1di

)
dt ≤

∫ ∫
ẑi2t+h|tdidt−

∫ ∫
ẑit+h|tẑ

i
t+h|t−1didt∫ ∫

ẑit+h|tẑ
i
t+h|t−1didt−

∫ (∫
ẑit+h|tdi

)(∫
ẑit+h|t−1di

)
dt ≤

∫ ∫
ẑi2t+h|tdidt−

∫ (∫
ẑit+h|tdi

)2

dt∫ [ ∫
ẑit+h|tẑ

i
t+h|t−1di−

(∫
ẑit+h|tdi

)(∫
ẑit+h|t−1di

)]
dt ≤

∫ [ ∫
ẑi2t+h|tdi−

(∫
ẑit+h|tdi

)2]
dt

which is true since the terms in hard brackets on the RHS is the cross-sectional variance of the

forecast whereas the term in hard brackets on the LHS is a cross-sectional covariance. Hence, the

covariance of the consensus errors with consensus revisions is weakly greater than the covariance

of individual-level pooled errors and revisions.

Finally, I show that the variance of the consensus revision is weakly smaller than the variance

of the pooled revision. This is simpler to verify. Note that

V(ẑit+h|t − ẑit+h|t−1) =

∫ ∫
(ẑit+h|t − ẑit+h|t−1)

2didt−
(∫ ∫

[ẑit+h|t − ẑit+h|t−1]didt

)2
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and

V(ẑt+h|t − ẑt+h|t−1) =

∫ (∫
[ẑit+h|t − ẑit+h|t−1]di

)2

dt−
(∫ [∫

[ẑit+h|t − ẑit+h|t−1]di

]
dt

)2

Once again, the second term in each of the above revision variance equations will cancel out. The

resulting condition that we wish to verify is

∫ (∫
[ẑit+h|t − ẑit+h|t−1]di

)2

dt ≤
∫ ∫

(ẑit+h|t − ẑit+h|t−1)
2didt

which holds by Jensen’s inequality.

Themodel implies that the OLS coefficient estimated from an errors on revisions regression will

be weakly greater than the analogous coefficient obtained from a pooled regression of individual

forecasters. This result does depend on the presence of nonlinear dynamics. In fact, this holds in

the linear setting as well (see Appendix B).31

31This need not be the case in other economic settings in which agents take actions, and their decisions are aggregated
in a manner other than by taking a simple mean. Depending on the context, it is possible for the aggregate decision to
also exhibit overreaction or excess volatility. Bordalo et al. (2020) provide a discussion of this.
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Appendix C Calibration

I internally calibrate four parameters: {σv,1, σv,2, cPF,1, cPF,2} where the subscript one denotes the

first variable (real GDP) and two denotes the second variable (unemployment). These parameters

are calibrated to match four moments: {β1,1, β1,2, α1,1, α1,2}.

Based on the calibration, the two state variables must only be simulated once. Following this,

I simulate a panel of forecasters who select KF or PF depending on the mean square errors and

their model adoption cost draw. Following the endogenous model selection decision, I simulate a

panel of errors and revisions from which I then compute model-implied errors-on-revisions coeffi-

cients. The simulated panel of forecasters is roughly 7 times the size of the size of the panel of SPF

forecasters.32.

I then collect the targeted empirical moments in a stacked vectorm(X) which comes from the

SPF sample. I next stack the model-based moments, which depend on θ = (β1,1 α1,1 β1,2 α1,2)
′,

in the vector m(θ). Finally I search the parameter space to find the θ̂ that minimizes the following

objective

min
θ

(
m(θ)−m(X)

)′
W
(
m(θ)−m(X)

)
where the weighting matrix is set to be the identity matrix,W = I .

32I also discard the first 1,000 observations of the simulated state variables
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Appendix D Details on Particle Filtering

In this section I briefly summarize the particle filter which is a popular nonlinear filter that have

been devised to handle state dynamics such as unobserved stochastic volatility.

In their seminal paper, Gordon et. al. (1993) propose the bootstrap filter which is a popular

variant to the particle filter. In principle, this approach makes use to mass points (particles) to

approximate the underlying filtering density, p(st|Zi
t). This is done by defining the set of particles

and associated weights: χ = {s(n), ω(n)}Nn=1.

Importantly, the filter still follows a general predict-update algorithm. For each particle n, the

forecaster propagates the estimate through the nonlinear system

s
i,(n)
t = F

(
s
i(n)
t−1 , wt

)
and then updates the weight,33

ω̃
i,(n)
t = ω

i,(n)
t−1 · p

(
zit|s

i,(n)
t

)
The forecaster then normalizes the weights

ω
i,(n)
t =

w̃
i,(n)
t∑N

n=1 ω̃
i,(n)
t

so that they sum to one. Lastly, the nowcast of the state is computed as a weighted average of the

particles

ŝit|t =
N∑
n=1

s
i,(n)
t · ωi,(n)t .

One common issue with sequential importance sampling is that the sample of particles tends to

degenerate as few particles are given most of the weight. As a result, I make use of the common

sequential importance resampling scheme in which I resample the particles, each with a probability

equal to its weight.
33 The precise manner in which the weights are updated depends on choices for the importance distribution.
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Forecast errors and revisions are analogous to the formulation with the Kalman filter general-

izations. The only difference is that the particle filtered estimates are not formulated by making use

of the Kalman filtering equations. Nonetheless, these estimates approximate the optimal forecast.
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