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Abstract

Using industry-level panel data and plausibly exogenous variation in supply con-

ditions, we estimate the elasticity of retail price margins with respect to inventories

along the retailer’s optimal pricing curve. We find that this elasticity is negative and

statistically significant, implying that lower finished-good inventories leads to higher

price margins. We assess the implications of this channel for inflation dynamics within

a New Keynesian Phillips curve (NKPC) framework that links inventories to retailers’

markup behavior. Incorporating the inventory-sales ratio into the NKPC markedly

improves the model’s empirical fit and helps account for two notable recent inflation

episodes: the missing disinflation of 2009–2011 and the COVID-era surge.
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“Retail markups in a number of sectors have seen material increases in what

could be described as a price-price spiral, whereby final prices have risen by

more than the increases in input prices. The compression of these markups as

supply constraints ease, inventories rise, and demand cools could contribute to

disinflationary pressures.”

—Lael Brainard (January 2023)1

1 Introduction

The Phillips curve has been a key pillar of the literature on inflation and the business

cycle. Nevertheless, its empirical versions to this date leave a lot of room for improvement

in accounting for inflation dynamics. In particular, the COVID-era inflation surge that

originated in the goods sector was not well captured by the standard Phillips curve models.

In this paper, we argue that inventories—specifically, retail inventories of finished goods—

play a critical role in shaping inflation dynamics through their impact on retail prices.2

While the standard New Keynesian Phillips curve (NKPC) abstracts from inventories, we

show that retail inventory fluctuations offer a key missing link: they help explain why prices

rose sharply during periods of supply disruption and low inventory availability.

Our approach begins with a stylized model of a retail firm that jointly chooses prices

and inventory stocks in the face of supply disruptions. We show that transitory shocks shift

the firm’s stocking policy without directly affecting its pricing decision, thereby enabling

identification of the optimal pricing curve using instruments for inventory disruptions.

Empirically, we estimate the elasticity of retail price margins with respect to inventories

using industry-level panel data spanning 2008q1 to 2025q1. Because pricing and stocking

decisions are jointly determined, accurately estimating this elasticity requires an identifica-

tion strategy. Motivated by our stylized model, we construct two shift-share variables that

capture plausibly exogenous transitory supply shocks. We use these shift-share variables to

1Speech of Federal Reserve Vice Chair Brainard on January 19, 2023, available at https://www.

federalreserve.gov/newsevents/speech/brainard20230119a.htm.
2Between 2007 and 2023, retail and wholesale trade margins made up 46.6% of the purchasers’ value

of consumer goods—nearly half of what consumers pay—underscoring their importance for goods inflation
dynamics.
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instrument for changes in retailers’ inventory-sales ratios. The first instrument reflects ma-

terial supply shortages among upstream manufacturers from the Census Bureau’s Quarterly

Survey of Plant Capacity (QSPC). The second instrument reflects global shipping delays

based on the Average Congestion Rate (ACR) of Bai et al. (2024). In both cases we regard

supply shifts as occurring upstream, and map them to downstream retailers using exposure

shares based on a retail industry’s supply use from a given manufacturing industry.

Identification with shift-share instruments can be achieved by assuming exogeneity of

either shifts or shares (Borusyak et al., 2022; Goldsmith-Pinkham et al., 2020). Our identifi-

cation rests on exogenous shifts. In our setting, the ideal experiment would be to randomly

assign observed transitory supply shifts across manufacturing industries. These shifts would

affect downstream retail industries differently given the degree to which retailers rely on

each manufacturer for their respective supply of finished goods. In practice, supply shifts

are unobservable, so we adopt a quasi-experimental framework by constructing proxies for

supply shifters.

The estimated elasticity is negative and economically significant: tighter inventories are

systematically associated with higher price margins, even after controlling for cost variables.

When instrumenting inventory changes with observed supply disruptions, to identify the

elasticity along the retailer’s optimal pricing curve, we estimate an even stronger negative

relationship, supporting the hypothesis that inventory scarcity contributes directly to retail

price increases and providing evidence of state-dependent retail pricing.

To assess the macroeconomic implications of this inventory-pricing channel, we extend

the stylized retail firm model, embedding the negative estimated elasticity into a New Key-

nesian framework. Retailers face both Rotemberg-style nominal rigidities and time-varying

markups arising from two sources: a Kimball (1995) demand structure and deep habit

formation a la Ravn et al. (2006). This setup yields two NKPC representations. The sales-

based NKPC highlights how inflation is tied to future marginal costs and marginal sales

benefits, but is difficult to estimate directly except in the special case without time-varying

markups. The stock-based NKPC, in contrast, relates inflation to observable inventory-

sales ratios and expected marginal cost growth, offering a tractable and empirically ro-

bust formulation. In particular, the inventory-sales ratio serves as a sufficient statistic for
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understanding inflationary pressures arising from the model’s endogenous retail markup

behavior.

Estimating the stock-based NKPC using macroeconomic data, we find that incorporat-

ing the retail inventory-sales ratio markedly improves the model’s empirical fit compared to

standard NKPC specifications. In particular, the stock-based NKPC helps account for two

prominent recent inflation episodes—capturing both the missing disinflation of 2009–2011

and the COVID-era surge. The underlying intuition is that detrended inventory levels were

tight in both periods, generating additional inflationary pressures that bring model-implied

inflation closer to the observed data. Because changes in the inventory-sales ratio orthogo-

nal to movements in the expected marginal cost growth should reflect movements in retail

sector markups within our model, the results highlight the important role that retail price

markups may play in driving inflation dynamics.

Related literature. The COVID-era surge in inflation has sparked renewed interest in

the role of supply-side disruptions in driving price dynamics. A growing literature docu-

ments how production and transportation frictions contributed to rising costs across sectors

(Alessandria et al., 2023; Boehm and Pandalai-Nayar, 2022; Comin et al., 2023; Ferrante et

al., 2023; Ortiz, 2022). These studies emphasize upstream channels—such as global supply

chain bottlenecks, convex production technologies, and sectoral reallocation—as key drivers

of inflationary pressures. We build on this line of research by focusing on a downstream

margin that has received comparatively less attention: the pricing behavior of retailers

facing inventory shortages. While prior work highlights how supply disruptions raise pro-

duction costs, our contribution is to show that they can also amplify retail price margins

when firms are constrained by limited inventory availability.

A paper closely related to our topic is Cavallo and Kryvtsov (2023), which uses online

micro-level stockout data to study the inflationary effects of consumer product shortages

during the pandemic. We complement their analysis by leveraging industry-level panel

data, which offers two distinct advantages. First, our data encompasses a broader set of

retailers, including the motor vehicle dealer industry—a key contributor to goods inflation

in the early stages of the pandemic. Second, we use retail gross margin data—the difference

between the sales price and the acquisition cost—rather than retail prices, and we control
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for several industry-level cost measures, such as average hourly earnings. This allows us

to analyze retailers’ pricing behavior beyond what can be attributed to underlying cost

pressures during this period.

The relationship between inventories and inflation has been explored in several studies,

particularly in the context of business cycle models. Jung and Yun (2005), Lubik and Teo

(2012), and Kryvtsov and Midrigan (2010, 2013) examine how inventory dynamics inter-

act with pricing, often within frameworks that assume constant elasticity of substitution

(CES) in demand. These papers typically find either a limited role for inventories in ex-

plaining inflation dynamics or a need for additional mechanisms—such as time-varying,

countercyclical markups—to reconcile theory with the data, especially in response to mon-

etary policy shocks. Our empirical analysis using industry-level data confirms that retail

price margins respond in ways that are inconsistent with CES demand, supporting the

need for richer pricing structures. In contrast to the prior literature, our model explicitly

incorporates standard features that generate time-varying price markups, including habit

formation and Kimball-style demand. We derive a representation of the NKPC in which the

inventory-sales ratio serves as a sufficient statistic for retail markups. This approach allows

us to empirically assess the role of time-varying markups in inflation dynamics without

relying on direct and often noisy measures of price margins.

Our paper also contributes to the empirical Phillips curve literature, which has grap-

pled with the declining explanatory power of traditional NKPC specifications in recent

decades (Mavroeidis et al., 2014; Stock and Watson, 2020; Coibion and Gorodnichenko,

2025). A central debate in this literature concerns the inclusion of forward-looking vari-

ables that capture the information and beliefs shaping firms’ pricing decisions. For example,

Coibion and Gorodnichenko (2015) show that replacing professional inflation forecasts with

household survey expectations can help resolve the 2009–2011 missing disinflation puzzle,

highlighting the value of expectation measures that better reflect firms’ information set.

Reis (2023) similarly argues for combining multiple indicators of inflation expectations to

obtain early and more accurate signals of inflation dynamics. In this spirit, we propose the

inventory-sales ratio as a complementary forward-looking variable that reflects retailers’

near-term beliefs and strategic pricing behavior. Incorporating this measure directly into
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the NKPC significantly improves its empirical fit, allowing it to account for key episodes

such as the 2009–2011 missing disinflation and the surge in goods inflation following the

COVID-era supply disruptions.

The remainder of the paper is organized as follows. Section 2 presents a stylized retail

firm model that motivates our identification strategy for estimating the inventory stock

elasticity of the retail price margin. Section 3 implements this strategy using industry-level

panel data. Section 4 extends the stylized model and derives a NKPC with inventories that

is consistent with the empirically observed negative inventory elasticity of retail markups.

Section 5 estimates the inventory-augmented Phillips curve to quantify the macroeconomic

importance of retail pricing behavior, as reflected in the inventory-sales ratio. Section 6

concludes.

2 A stylized retail firm model

In this section, we present a stylized model of a retail firm to illustrate how temporary

supply disruptions can be used to identify the firm’s optimal pricing curve as a function of its

inventory stock. The key insight is that while the firm’s optimal stocking decision depends

on both current and expected future costs of acquiring goods, its pricing decision depends

only on the expected future cost. Therefore, changes in the current cost of acquiring goods—

so long as they do not affect expectations of future costs—will shift the firm’s stocking curve

but leave its pricing curve unchanged. In particular, if supply disruptions are perceived to

be transitory relative to other cost shocks, they can serve as valid instruments to trace out

the firm’s pricing curve. We first show this identification logic in a static one-period model,

and then extend the insight to a dynamic two-period setting that makes explicit the role

of intertemporal inventory decisions in separating pricing from stocking behavior.

2.1 One-period model

To build intuition about the retail firms’ joint decisions over stocking and pricing, we

consider a one-period model in which the firm purchases a stock of finished goods and

sets a price at which to sell them. The firm simultaneously chooses the stock level and the
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selling price, taking as given the demand function and the unit cost of stocking. Demand

for the good, denoted s, is given as s = s(a, p) where a is the stock and p is the price.3

We assume the demand function satisfies ∂s/∂a > 0, ∂2s/∂a2 < 0, and ∂s/∂p < 0.

The first two conditions are standard in the inventory literature. For example, in stockout

avoidance models, an additional unit of stock raises sales up to the point where stockouts

are eliminated; in stock-elastic demand models, sales increase with an additional unit of

stock but at a diminishing rate.

After sales, the firm may liquidate unsold inventory, a − s, incurring a cost. The total

cost of stocking, net of liquidation, is given by:

(c+ ξ)a− (1− γ)c(a− s),

where c is the unit cost of stocking, ξ captures an additional shadow cost faced by the

retailer (e.g., supply disruptions not embedded in c), and γ governs the liquidation cost.

The parameter ξ is a stand-in for the difficulty in stocking by the retail firm not captured

in the unit cost of stocking c.

The firm’s profit is given by:

ϕ = ps(a, p)− (c+ ξ)a+ (1− γ)c(a− s(a, p)).

The firm chooses a and p to maximize this profit.

The first order condition with respect to a (stocking) is:

p
∂s

∂a
− (c+ ξ) + (1− γ)c

(
1− ∂s

∂a

)
= 0,

which simplifies to:

(p− (1− γ)c)
∂s

∂a
= γc+ ξ. (1)

Absent both a shadow cost of stocking (ξ = 0) and a liquidation cost (γ = 0), the right-hand

side of (1) becomes zero. In that case, as long as p > (1 − γ)c, the firm would optimally

3For simplicity, we normalize aggregate demand to 1.
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stock an infinite quantity (a → ∞), driving ∂s/∂a → 0. Therefore, at least one of ξ or

γ must be strictly positive to yield a finite interior solution. The resulting stocking curve

determines the optimal level of the stock as a function of the price, conditional on the cost

parameters c, ξ, and γ.

The first order condition with respect to price is:

s = −(p− (1− γ)c)
∂s

∂p
. (2)

This pricing equation pins down the optimal price as a function of the level of the stock,

taking c and γ as given. For example, suppose the demand function has constant price

elasticity:

s(a, p) = u(a)× p−η,

where u(a) is increasing in a and η > 1. Then the price markup is constant and given by:

µ ≡ p

(1− γ)c
=

η

η − 1
,

which is the standard result under CES demand. In this case, the pricing curve is flat, and

changes in the stock have no effect on the markup.

Taken together, the optimal stocking and pricing curves jointly determine the firm’s

equilibrium stock and price (or markup). A key feature of this simple model is that the

shadow cost ξ appears only in the stocking condition—not in the pricing condition. As

a result, shifts in ξ move the stocking curve without affecting the pricing curve, allowing

us to trace out the firm’s pricing behavior. Figure 1 illustrates this identification strategy.

When ξ = ξ∗, the firm’s equilibrium stock and markup are (a∗, µ∗). When ξ increases to

ξ∗∗ > ξ∗, the equilibrium shifts to (a∗∗, µ∗∗). Supply disruptions that affect ξ not captured

by c therefore serve as valid instruments to recover the pricing curve. If the pricing curve

is flat—as in the case of constant price elasticity—then changes in ξ would shift the stock

without altering the markup. In contrast, if the pricing curve is downward sloping, as

shown in the figure, then a higher ξ leads to lower stock and a higher markup. Verifying

this inverse relationship between inventory and price margins is the focus of the empirical
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Figure 1: Illustration of a Retailer’s Equilibrium

0
Stock of goods, a

Price markup, µ

µ∗∗

a∗∗

µ∗

a∗

Pricing curve

Stocking curve (ξ∗∗)

Stocking curve (ξ∗)

Notes: This plot is illustrative. A finished-goods inventory model with a negatively sloped stocking curve
would yield qualitatively similar implications.

analysis that follows.

2.2 Two-period model

We now extend the logic of the one-period model to a dynamic, two-period setting in which

inventories can be carried across periods. This extension verifies that the identification

strategy remains valid when the firm makes intertemporal stocking decisions.

Assume the retail firm lives for two periods, facing the same demand function in each

period as in the one-period model, s = s(a, p). In the first period, the firm purchases a

stock of goods a1, sets a price p1, and sells s1 = s(a1, p1). The remaining inventory a1 − s1

is carried over to the second period, subject to a depreciation rate δ. In the second period,

the firm purchases n additional units, bringing the total available stock to:

a2 = (1− δ)(a1 − s1) + n.
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It then sets price p2 and sells s2 = s(a2, p2) units. As in the one-period model, leftover

inventory at the end of the second period is liquidated at cost, governed by the parameter

γ.

The firm maximizes the sum of discounted profits:

π = p1s1 − (c1 + ξ1)a1 + βE1 [p2s2 − c2(a2 − (1− δ)(a1 − s1)) + (1− γ)c2(a2 − s2)] ,

where β is the discount factor, and E1 denotes expectations conditional on information

available in period 1. We assume that the second-period supply disruption ξ2 is unantici-

pated, so E1ξ2 = 0.

The first-order condition with respect to a1 (initial stocking) is:

(p1 − β(1− δ)E1c2)
∂s(a1, p1)

∂a1
= c1 + ξ1 − β(1− δ)E1c2,

which mirrors the one-period stocking condition in equation (1).

Similarly, the first-order condition with respect to p1 is:

s1 = − (p1 − β(1− δ)E1c2)
∂s(a1, p1)

∂p1
,

which corresponds to the pricing condition in equation (2).

As in the one-period case, the shadow cost ξ1 enters only the stocking equation and

not the pricing equation. This separation confirms that temporary supply disruptions—

captured by changes in ξ1—remain valid instruments for identifying the slope of the pricing

curve in a dynamic environment.

2.3 Empirical proxy for the stock of goods: Inventory-sales ratio

In the next section, we turn to the data and implement this identification strategy using

industry-level panel data to estimate the elasticity of retail price margins with respect to the

stock of goods. In empirical work, we proxy the stock using the end-of-period inventories.

Indeed, our stylized model implies a tight relationship between the stock of goods, a, and
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end-of-period inventories, inv, as given by:

inv = a− s.

Letting is = inv/s denote the inventory-sales ratio and IS its long-run average, we obtain

the following log-linear approximation:

â = ŝ+
IS

IS + 1
îs,

where hatted variables denote log-deviations from their respective averages. This expression

implies that changes in the stock-sales ratio and the inventory-sales ratio are proportionally

related. As such, conditional on sales, fluctuations in the stock of goods are directly reflected

in movements of the inventory-sales ratio. Accordingly, we use the inventory-sales ratio as

an empirical proxy for the stock of goods in our model—controlling for sales—as it conveys

equivalent information about stock dynamics and is both directly observable and widely

used in the empirical literature.

3 Inventories and prices at the industry level

In this section, we use industry-level panel data to estimate how the retail and wholesale

margin price reacts to changes in the inventory stock.4

3.1 Industry-level data

We assemble quarterly data for eight industries across the retail and wholesale trade sectors,

which we collectively refer to as the retail sector for simplicity, spanning 2008q1 to 2025q1.

From the Bureau of Labor Statistics (BLS), we collect industry-specific Producer Price

Index (PPI) data, average hourly earnings, and total hours worked. Note that in the trade

sectors, the PPI reflects gross margins—that is, the difference between the sales price and

the acquisition cost of goods sold by retailers. From the Bureau of Economic Analysis

4Since both retailers and wholesalers primarily manage finished-good inventories and typically do not
transform the products as manufacturers do, we also include data from the wholesale trade industry for
completeness of our analysis.
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(BEA), we incorporate information on real inventories and real sales, which are sourced

from the National Income and Product Accounts tables. We merge the BLS and BEA data

at the three-digit North American Industry Classification System (NAICS) level, which

represents the most granular classification available across these data sets. Further details

on data construction are provided in the Appendix.

3.2 Industry-level regression framework

To formally examine the relationship between inventory holdings and changes in the indus-

try gross margin, we estimate the following regression,

∆k log(PPIi,t) = β∆k log(ISi,t) +Xi,tγ + εi,t, (3)

where ∆k denotes the k-th difference operator. The outcome variable is the percentage

change in the gross margin, measured as the log-difference in the PPI from period t− k to

t. The coefficient of interest, β, captures the relationship between changes in the inventory-

sales ratio and changes in the gross margin. All control variables are contained in Xi,t.

Because stocking and pricing decisions are jointly determined, estimating equation (3)

via ordinary least squares (OLS) would yield a biased estimated of β. In particular, as

shown in the stylized model, unobserved persistent or anticipated shocks can shift both

the pricing and stocking curves. Shifts in the pricing curve induce a positive correlation

between stocks and margins. As a result, we expect the OLS estimate of β to be biased

upward.

To estimate equation (3), we therefore adopt an identification strategy which exploits

plausibly exogenous and transitory supply-side variation which we discuss in turn.

3.3 Identification with shift-share instruments

We seek to establish causality by instrumenting for the retailer’s inventory-sales ratio. Moti-

vated by our stylized model, we construct two instruments that exploit plausibly exogenous

variation in upstream suppliers’ ability to deliver finished-goods inventories to downstream

retailers. Delivery disruptions can arise from (i) production problems—including suppli-
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ers’ difficulties sourcing raw materials—and (ii) delays in shipping finished goods. Our

instruments capture both channels by measuring retailers’ exposure to shocks that affect

upstream manufacturers’ capacity to produce and deliver goods.

Each instrument takes the form of a shift-share variable (Bartik, 1991). Identification

comes from plausibly exogenous shifts at the manufacturing level that reflect supply-side

disruptions. Conditional on the specified controls, we assume (i) these shifts are orthogo-

nal to unobserved shocks in downstream retail outcomes, and (ii) the mapped shifts affect

retail price margins only through inventories. Fixing the exposure shares ex ante makes

them predetermined but does not ensure exogeneity, since shares can co-move with per-

sistent demand or pricing dynamics. Following Borusyak et al. (2022), we therefore place

identification on the exogeneity of the shifts: under their quasi-experimental shift-share

framework, a share-weighted average of shifts is as good as random when the shifts are

exogenous, so instrument validity hinges on the shifts rather than on the exogeneity of the

exposure shares. We next define the two shift-share instruments used in our analysis.

3.3.1 Reported material shortages from the QSPC

Production delays in manufacturing typically show up in capacity utilization data. Indeed,

capacity utilization have taken center stage in recent work on inflationary pressures arising

from production bottlenecks (e.g., Boehm and Pandalai-Nayar, 2022; Comin et al., 2023).

Yet utilization is endogenous, reflecting both demand and supply forces. Unlike Boehm and

Pandalai-Nayar (2022), who emphasize demand-driven movements in utilization and their

interaction with supply conditions, our goal is to isolate upstream supply disturbances that

shift utilization orthogonally to contemporaneous retail demand (conditional on controls).

Our first instrument exploits the establishment-level reason codes in the QSPC—the sur-

vey underlying official capacity utilization statistics. A key advantage of the QSPC is that

it records why establishments operate below capacity, allowing us to isolate supply-driven

variation in utilization. For each three-digit NAICS manufacturing industry, we collect the

share of underutilizing establishments that cite “insufficient supply of materials.”5

Firm-reported material shortages have been shown to track supply-driven disturbances

5See https://www.census.gov/programs-surveys/QSPC.html for details. The relevant ratio appears
in Table 3 of the published survey results.
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in production (Balleer and Noeller, 2024; Braun et al., 2024). Building on this evidence, we

take the raw shortage shares and, industry-by-industry, residualize them on their own lag,

measures of contemporaneous aggregate demand and industry-specific demand, and quarter

fixed effects for seasonality. The aggregate demand proxy follows Shapiro (Forthcoming).

The industry-specific demand proxy is the common component of gross output quantities

and prices (extracted separately by industry) that loads positively on both. This procedure

removes predictable demand movements and serial correlation, leaving an innovation that

reflects unexpected, supply-driven disruptions.

Formally, our QSPC shift-share instrument is defined as:

ZQSPC
i,t =

∑
j

sij,t0 ×∆kg
QSPC
j,t , (4)

where the shift variable is,

∆kg
QSPC
j,t =

k∑
ℓ=0

εQSPC
j,t−ℓ . (5)

The shift variable is defined as the residualized share of plants in upstream industry j

reporting material shortages (as described above). Meanwhile, the share variable, sij,t0 ≡
ωij,t0/ωi,t0 , is defined as the retailer i’s exposure to a given manufacturing industry j in

period t0. The numerator, ωij,t0 , is the value of inputs purchased by retail industry i from

manufacturing industry j in the base year t0.
6 The denominator, ωi,t0 =

∑
j ωij,t0 , represents

the total value of inputs (manufacturing and non-manufacturing) used by retailer i. The

term sij,t0 thus reflects the input share sourced from manufacturing industry j within

retailer i’s total input bundle.

3.3.2 Bai et al. (2024)’s supply chain disruption index

We next consider an instrument for global supply disruptions based on the ACR index of

Bai et al. (2024), available from January 2017 to June 2024. The ACR index measures

global port congestion and is regarded as an exogenous indicator of shipping disruptions.

6We calibrate ωij,t0 using data from the BEA Industry Input-Output Use Table, with t0 = 2007, which
is before the start of our sample period.
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Our ACR shift-share instrument is defined as:

ZACR
i,t =

∑
j

(
sij,t0 ×

mj,t0

mt0

)
×∆kg

ACR
t , (6)

where the shift variable is,

∆kg
ACR
t =

k∑
ℓ=0

εACR
t−ℓ , (7)

and εACR
t is the residual from a regression of the ACR index on its own lag. Because the

ACR shift variable is a time series, we define our share variable as a composite measure

of exposure where sij,t0 denotes the retailers’ exposure from the BEA 2007 Use Table, as

before, and mj,t0/mt0 denotes the manufacturers’ import share in 2007. Thus, the share

variable is an exposure weight mapping global supply disruptions to manufacturers accord-

ing to import exposure, and to retailers based on the use shares.

3.4 Regression results

We estimate equation (3) via OLS as well as with our instrumental variables, using the

aforementioned industry-level data across retailers. The control variables specified in Xi,t

consist of the k-period log-differences of the following industry-level variables: real sales,

average hourly earnings, total hours worked, and an exposure-weighted sum of upstream

manufacturing suppliers’ PPI. The upstream PPI for each retail industry is defined as:

PPIupstreami,t =
∑
j

sij,t0 × PPIj,t, (8)

where PPIj,t denotes the PPI of manufacturing industry j in period t. We also specify a

range of fixed effects in Xi,t. First, we specify industry fixed effects to control for time-

invariant unobserved retailer characteristics as well as the time-invariant component of

the shifts. In addition, we specify industry-specific linear time trends to absorb gradual,

deterministic retail industry-specific trends over time. Finally, we specify time fixed effects.

For the QSPC instrumental variable regression, however, we specify an interaction of the
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Table 1: Industry Regression Results

Dependent variable: Gross price margin

Estimation method OLS IV

Instrument – QSPC ACR QSPC, ACR

Panel A: One-quarter Difference (k = 1)

IS ratio -0.143∗∗∗ -0.579∗∗∗ -0.583∗∗∗ -0.648∗∗∗

(0.038) (0.215) (0.179) (0.166)

First-stage F-stat 5.62 9.50 12.30

AR Wald F (p-value) 0.080 0.001 <0.001

Hansen J (p-value) 0.800

Observations 536 536 232 232

Sample 2008q1-2025q1 2008q1–2025q1 2017q2–2024q2 2017q2–2024q2

Panel B: Two-quarter Difference (k = 2)

IS ratio -0.121∗∗ -0.786∗∗∗ -0.446∗∗∗ -0.570∗∗∗

(0.048) (0.233) (0.064) (0.066)

First-stage F-stat 11.09 31.32 15.51

AR Wald F (p-value) 0.012 <0.001 <0.001

Hansen J (p-value) 0.180

Observations 536 528 224 224

Sample 2008q1–2025q1 2008q2-2025q1 2017q3–2024q2 2017q3–2024q2

Notes: Driscoll–Kraay standard errors are reported in parentheses. Instruments for the IV columns are:
reported material supply shortages from the Quarterly Survey of Plant Capacity (QSPC) and Average
Congestion Rate (ACR). * p<0.10, ** p<0.05, *** p<0.01.

sum of exposure shares with time fixed effects.7

3.4.1 OLS estimation

We first estimate equation (3) using OLS. The results are reported in the OLS column of

Table 1. Panels A and B present estimates for the one-quarter difference (k = 1) and the

7In our context, the exposure shares do not sum to one as we measure a retail industry’s exposure
based on its supply use from only manufacturers (ωij,t0) even though its total supply use (ωi,t0) includes
non-manufacturers. Without controlling for sum of share-by-time fixed effects, our QSPC instrument would
be correlated with with sum of share which would render our QSPC instrument invalid.
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two-quarter difference (k = 2), respectively. The OLS estimate in Panel A suggests that

changes in the inventory-sales ratio are negatively related to changes in the retailer’s gross

price margin. We find a similar negative relation at the two-quarter horizon (Panel B).

Specifically, a one percentage point decline in the inventory-sales ratio over two quarters is

associated with a roughly 0.12–0.14 percentage point increase in the gross margin over the

same period.

3.4.2 Two-stage least squares (2SLS) estimation

We next implement instrumental variables (IV) estimation using 2SLS, introducing the

instruments first individually and then jointly. The corresponding results are reported in

the final three columns of Table 1. At both horizons (k = 1 and k = 2), a one percentage

point decline in the inventory-sales ratio leads to a statistically significant increase in retail

gross margins. The estimated elasticities range from approximately −0.45 to −0.79. These

estimates are economically significant, implying that a one standard deviation decrease in

the inventory-sales ratios raises gross margins by about one standard deviation.

The first-stage F-statistics suggest that the instruments are generally strong, partic-

ularly at the two-quarter horizon and when using ACR or both instruments jointly. For

the one-quarter specification with QSPC alone, the F-statistic is somewhat lower—possibly

reflecting retail pricing frictions at higher frequencies—but inference remains supported by

the Anderson-Rubin Wald test, which is robust to weak instruments.

In the final column of Table 1, we use both instruments jointly and continue to estimate

a statistically significant and negative elasticity. The first stage F-statistics remain above

conventional thresholds, and we can also implement a test of overidentifying restrictions,

which provides additional support for the validity of our estimates.8

Relative to OLS, the IV estimates are more negative, indicating that the OLS estimates

are biased upward. This pattern is consistent with the intuition described above and with

8In the final column of Table 1, we normalize the QSPC shares so that they sum to one. This normal-
ization allows us to include time fixed effects rather than a full set of share-by-time fixed effects. Without
normalization, the share-by-time fixed effects would subsume the ACR shift-share instrument, preventing us
from using both instruments jointly. We view the normalization as a conservative adjustment, since it tends
to weaken the strength of the QSPC instrument by not capturing the full variation in the non-normalized
shares.
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Table 2: Industry Regression Results (Including Other Input Costs)

Dependent variable: Gross price margin

Estimation method OLS IV

Instrument – QSPC ACR QSPC, ACR

Panel A: One-quarter Difference (k = 1)

IS ratio -0.342∗ -1.089∗∗∗ -1.356 -0.986∗∗∗

(0.195) (0.367) (0.544) (1.439)

First-stage F-stat 9.38 1.86 12.17

AR Wald F (p-value) 0.064 0.520 0.039

Hansen J (p-value) 0.81

Observations 288 96 86 86

Sample 2019q1–2025q1 2019q1–2025q1 2019q1–2024q2 2019q2–2024q2

Panel B: Two-quarter Difference (k = 2)

IS ratio -0.674∗∗∗ -1.752∗∗∗ -1.589∗∗ -1.521∗∗∗

(0.221) (0.426) (0.764) (318)

First-stage F-stat 13.59 3.69 17.49

AR Wald F (p-value) 0.0005 0.181 0.006

Hansen J (p-value) 0.91

Observations 273 91 81 81

Sample 2019q2-2025q1 2019q1–2025q1 2019q1–2024q2 2019q2–2025q1

Notes: Driscoll–Kraay standard errors are reported in parentheses. Instruments for the IV columns are:
material shortages reported in the Quarterly Survey of Plant Capacity (QSPC) and Average Congestion
Rate (ACR). * p<0.10, ** p<0.05, *** p<0.01.

the mechanism illustrated in the stylized model. In particular, an upward shift in the pricing

curve results in higher margins and greater inventory stocks. Because OLS does not account

for these unobserved shifts in the pricing curve, it induces a positive correlation between

the inventory-sales ratio and gross margins, thereby biasing the OLS estimates upward.
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3.4.3 Robustness

Retailers may face additional costs beyond the labor and acquisition costs that we explicitly

control for. If these costs are omitted, we cannot rule out that the estimated increase in

gross margins reflects higher unobserved input costs. To address this concern, we estimate

a version of our regressions that includes controls for other non-labor and non-capital costs,

drawn from the BLS satellite series of net inputs to industry price indexes. These data are

available only from December 2018 for NAICS 441, 445, and 452, and from December 2020

for the remaining retail and wholesale industries.

Because these series are available only over a shorter horizon, the sample size is re-

duced and the estimates are correspondingly noisier. Nonetheless, as reported in Table 2,

the results remain broadly consistent with our baseline findings, indicating that our main

conclusions are robust to the inclusion of these additional cost controls.

We report further robustness checks in the Appendix. These include first-stage regres-

sion results and a set of balance tests for the QSPC instrument at both at the manufacturing

and retail levels. We also redefine the QSPC instrument to address potential measurement

concerns.

3.5 Interpretation of the pricing response

Our findings suggest that retail prices tend to rise in response to exogenous supply dis-

ruptions, even after accounting for a broad set of controls, including measures of input

costs. In the context of the NKPC literature, this evidence aligns with a strand of research

emphasizing the role of time-varying retail price markups in shaping inflation dynamics.

The next section builds on this perspective by further exploring its implications.

That said, we acknowledge that alternative interpretations of our results are possible and

warrant further investigation. First, given our reliance on industry-level data, we are unable

to observe the composition of retail goods. Retailers may respond to supply disruptions by

shifting toward higher-margin products, which would mechanically raise measured price

margins without requiring active price increases. Second, we cannot rule out unobserved

cost pressures. In particular, absent data on retailers’ expectations of future marginal costs,

it remains possible that firms raise prices to maintain rather than expand markups. Third,
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we remain agnostic on manufacturer markups and do not study their interaction with

retailer markups—a topic examined in detail by Alvarez-Blaser et al. (2025) using data

from a large global manufacturer. These alternative mechanisms highlight the need for

richer data to fully disentangle pricing responses, which we leave for future work.

4 The NKPC with inventories

Our empirical investigation reveals a significantly positive response in the retail price margin

to supply disruptions that adversely affect the stocking behavior of the retail industry.

Building on this relationship, we examine whether the systematic link between the dynamics

of the retail inventory-sales ratio and the retail price markup can help improve the empirical

performance of the NKPC.

To address this question, we extend the stylized model introduced in Section 2. Specif-

ically, we incorporate inventory management into the retail sector and introduce two stan-

dard sources of state-dependent price markups: the demand specification of Kimball (1995)

and the deep habits framework of Ravn et al. (2006). These mechanisms generate time-

varying price margins that align with our empirical findings and are widely utilized in the

literature on inflation and business cycles.

Subsequently, we derive two representations of the linearized NKPC with inventories.

We demonstrate that incorporating the retail inventory-sales ratio as an observable variable

in the NKPC effectively captures time-varying price markups, which are otherwise difficult

to measure directly.

4.1 Demand function

We first derive the retailers’ demand function. To introduce time-varying price markups

even without nominal rigidities, we specify the following aggregator where the aggregate

habit-adjusted consumption, Ct, is implicitly defined as∫ 1

0

vj,tΥ

(
sj,t − θsj,t−1

vj,tCt

)
dj = 1.
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The variables sj,t and vj,t denote the real sales and household preference of variety j ∈ [0, 1]

in period t, respectively. The parameter θ ∈ [0, 1] measures the degree of habit formation

in consumption of each variety. This specification encompasses both the state-dependent

demand elasticity a la Kimball (1995) and deep-habit formation in customer markets ana-

lyzed in Ravn et al. (2006). Following Klenow and Willis (2016), we assume the aggregator

Υ(x) such that

Υ′(x) =

(
η − 1

η

)
exp

(
1− x

ψ
η

ψ

)
,

This function is consistent with CES when ψ > 0 approaches zero and η > 1 is the price

elasticity of demand under CES. More generally, the price elasticity of demand is expressed

as

−
(
dsj,t
dpj,t

)(
pj,t
sj,t

)
=

Υ′(xj,t)

xj,tΥ′′(xj,t)

sj,t − θsj,t−1

sj,t
= ηx

−ψ
η

j,t

sj,t − θsj,t−1

sj,t
,

where xj,t ≡ (sj,t − θsj,t−1)/(vj,tCt). As discussed above, the price elasticity of demand is η

in the special case of CES (θ = ψ = 0). Otherwise when θ > 0 or ψ > 0, the price elasticity

of demand varies due to its state and history dependence, allowing more flexibility for the

model to be consistent with our empirical findings of a negative inventory stock elasticity

of the price margin.

As shown in the Appendix, the variety j demand function is derived as follows:

sj,t = vj,tCtΥ
′−1

(
pj,t
Pt

Dt

)
+ θsj,t−1, (9)

where the demand index Dt is defined as

Dt =

∫ 1

0

Υ′
(
sj,t − θsj,t−1

vj,tCt

)
sj,t − θsj,t−1

Ct

dj,

and the price index Pt is implicitly defined in

1 =

∫ 1

0

vj,tΥ

(
Υ′−1

(
pj,t
Pt

Dt

))
dj.
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4.2 The retail firm problem

The monopolistically competitive retail firm j in period t purchases yj,t quantity of manu-

facturing goods at a unit price Qt. It differentiates the good which is then stocked and sold

to households at a price pj,t. The stock of retail goods, aj,t, is the sum of the undepreciated

inventories from the previous period and the goods purchased in the current period:

aj,t = (1− δ)invj,t−1 + yj,t, (10)

where invj,t−1 is the end-of-period inventories in period t− 1 and δ is the inventory depre-

ciation rate. In turn, the end-of-period inventories evolve as follows:

invj,t = aj,t − sj,t. (11)

Dividing each side by sj,t, we obtain a relationship between the inventory-sales ratio and

the stock-sales ratio. Since they differ only by a constant, the two ratios move together.

The inventory-sales ratio is defined as:

isj,t =
invj,t
sj,t

.

Demand for the retail good is given in (9). Following Bils and Kahn (2000) and Jung

and Yun (2005), we assume that demand is also elastic to the stock of goods for sale:

vj,t =

(
aj,t
At

)ζ

, (12)

where ζ is the sales elasticity to the stock of goods.9 The aggregate stock is defined as

At =

(∫ 1

0

aζj,tdj

) 1
ζ

.

9We do not employ a stockout avoidance model, as the presence of deep habits introduces rich dynamics
that make it difficult to track the relevant idiosyncratic state variables. As noted by Crouzet and Oh (2016)
in the context of news shocks and by Kryvtsov and Midrigan (2013) for monetary policy shocks, the stock-
elastic demand specification and the stockout avoidance model exhibit similar equilibrium implications for
inventory dynamics, particularly with respect to the endogeneity of inventory-sales ratios.
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Nominal price rigidity is introduced a la Rotemberg (1982). In detail, the retail firm

faces a quadratic price adjustment cost in the following form:

νp
2

(
pj,t
pj,t−1

− 1

)2

PtSt, (13)

where νp represents the degree of nominal price rigidity and St =
∫ 1

0
sj,tdj is aggregate

sales.

The retail firm maximizes the expected discounted sum of profits:

E0

∞∑
t=0

Λ0,tΦj,t,

where the period-t profit of the retailer is

Φj,t = pj,tsj,t −Qtyj,t.

The retailer is subject to the above conditions (9)-(13). The full optimality conditions are

presented in the Appendix.

4.3 Deriving the NKPC with inventories

In standard New Keynesian models without inventories, the NKPC is obtained by com-

bining the firm’s pricing decision with its sales condition, under the assumption that the

firm satisfies all demand at its chosen price. Implicit in this setup is that the retail firm’s

stocking decision is equivalent to its production and sales decision.

With inventories, this equivalence breaks down: retailers can satisfy demand not only by

purchasing new goods but also by drawing down existing stocks. This distinction introduces

an additional margin of adjustment and implies that there are multiple routes to deriving

the NKPC. Below, we present the key equilibrium conditions that give rise to alternative

representations of the NKPC.
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4.3.1 Equilibrium pricing condition

The log-linearized optimal pricing condition in symmetric equilibrium is

π̂t = βEtπ̂t+1 −
1

νp
(κ̂t + ĉt − ŝt), (14)

where hatted values denote log-deviations from the noninflationary steady state, and κt is

the real marginal benefit of an additional unit of sales in period t—the Lagrange multiplier

on the demand constraint (9), capturing the inframarginal revenue effect. Current inflation

therefore depends on expected future inflation, the real marginal benefit of sales, and the

gap between habit-adjusted consumption and sales. This condition also applies in the model

without inventories. The key difference between models with and without inventories lies

in how demand is met, as summarized by κt. In the model with inventories, κt is not

directly linked to contemporaneous real marginal cost because retailers can satisfy demand

by drawing down existing inventories rather than immediately purchasing additional goods

to restock.

4.3.2 Sales-based NKPC

The log-linearized optimal sales condition is

κ̂t = θβEt(r̂t,t+1 + κ̂t+1)−

[
η(1− θ)

(
1 + ψ ln

(
η − 1

η

))−1

− 1 + θβ

]
Et(r̂t,t+1 + m̂ct+1),

(15)

where rt,t+1 is the real stochastic discount factor between period t and t+1 and mct the real

marginal cost of producing a retail good in period t, equivalently the Lagrange multiplier

on the law of motion for the inventory stock (10).

To interpret this condition, it is helpful to begin with the benchmark New Keynesian

model without inventories and with CES preferences across varieties (θ = ψ = 0). The

sales condition then reduces to

κ̂t = −(η − 1)m̂ct.
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Because the markup without inventories is the inverse of real marginal cost, this relation

shows that the real marginal benefit of sales is proportional to the markup. Substituting

this expression into (14) yields the familiar Rotemberg-type NKPC:10

π̂t = βEtπ̂t+1 +

(
η − 1

νp

)
m̂ct.

In this benchmark, the sales and stocking conditions coincide, since all sales must be met

by contemporaneous purchases of goods. This equivalence implies a one-for-one mapping

between marginal cost and the marginal benefit of sales, which is why the standard NKPC

can be written directly in terms of real marginal cost.

With inventories, however, this one-for-one mapping breaks down. Additional sales need

not be met by contemporaneous purchases. Instead, the retailer recognizes that sales can

be satisfied by drawing down inventories, so the optimal sales decision depends on the

expected discounted future marginal cost rather than on the current marginal cost. When

θ > 0, habit formation adds an additional intertemporal channel: the expected discounted

marginal benefit of future sales also matters. Combining (14) and (15) yields the following

sales-based NKPC.

Proposition 1 (Sales-based NKPC). The sales-based NKPC is derived by combining (14)

and (15):

π̂t = βEtπ̂t+1 +B1Et(r̂t,t+1 + m̂ct+1)−B2Et(r̂t,t+1 + κ̂t+1) +B3(ŝt − ĉt),

where

B1 =
1

νp

[
η(1− θ)

(
1 + ψ ln

(
η − 1

η

))−1

− 1 + θβ

]
, B2 =

θβ

νp
, B3 =

1

νp
.

In the CES case (θ = ψ = 0), the sales-based NKPC simplifies to

π̂t = βEtπ̂t+1 +

(
η − 1

νp

)
Et(r̂t,t+1 + m̂ct+1).

10Without habits (θ = 0), consumption equals sales so that ĉt = ŝt.
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There are two main takeaways. First, without habits, expected future inflation and

expected discounted real marginal cost are sufficient statistics for current inflation. Second,

with habits, the sales-based NKPC is generally difficult to estimate empirically because it

requires separate measures of the real marginal benefit of sales and the marginal cost.

4.3.3 Stock-based NKPC

Inventories also give rise to the equilibrium stocking condition, which characterizes how

retailers choose inventory holdings. The log-linearized condition is

ât = ĉt +
1

1− β(1− δ)
[β(1− δ)Et(r̂t,t+1 + m̂ct+1)− m̂ct] + κ̂t. (16)

This condition highlights three key determinants of the retailer’s stocking decision. First,

aggregate demand (ĉt) matters, as retailers target a desired inventory-sales ratio; higher

expected sales translate into higher desired stocks. Second, the intertemporal substitution

channel in stocking captures the difference between the expected discounted future marginal

cost and the current marginal cost: when costs are expected to rise, firms have an incentive

to buy more today and carry inventories forward. This channel parallels the mechanism

emphasized by Crouzet and Oh (2016). Third, the term κ̂t reflects the real marginal benefit

of sales : holding more stock increases sales capacity and boosts expected profits, reinforcing

the incentive to accumulate inventories.

Substituting out κ̂t and denoting IS as the steady-state inventory-sales ratio, we obtain

the following stock-based NKPC.

Proposition 2 (Stock-based NKPC). The stock-based NKPC is derived by combining (14)

and (16):

π̂t = βEtπ̂t+1 + B̃1[β(1− δ)Et(r̂t,t+1 + m̂ct+1)− m̂ct]− B̃2îst,

where

B̃1 = [νp(1− β(1− δ))]−1, B̃2 = IS(νp(IS + 1))−1.
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Two insights stand out. First, inflation is driven by three observable statistics: expected

future inflation, the expected change in discounted real marginal cost, and the inventory-

sales ratio. Second, this representation is agnostic to the sources of endogenous markup

variation arising from the Kimball aggregator or deep habits, since these demand effects

are absorbed by the inventory-sales ratio. The dynamics of the ratio thus serve as a sufficient

statistic for markup behavior in a wide class of models, including CES, Kimball demand,

and deep habits.

4.4 Discussion

We find that the stock-based NKPC offers greater flexibility by remaining agnostic about

the sources of time-varying markups. Its key observable is the inventory-sales ratio, which—

after purging the intertemporal substitution channel—primarily captures the inflationary

role of the marginal benefit of sales, i.e., markups. This provides an empirically tractable

proxy for time-varying markups in inflation dynamics, which we analyze in the next section.

It is also worth noting that, while our industry-level IV results exploit exogenous vari-

ation from short-lived supply disruptions, the stock-based NKPC does not take a stand on

the origin of shocks. Its relative improvement in fit should therefore not be interpreted as

evidence of the importance of supply disruptions per se, since any inflationary disturbance

can propagate through inventories. Put differently, while our IV strategy isolates shifts in

the stocking curve, the fluctuations in the inventory-sales ratio that enter the stock-based

NKPC reflect both shifts of the curve and endogenous movements along it.

5 Empirical Phillips curve with inventories

In this section, we estimate the stock-based NKPC using macroeconomic data and show

that it outperforms both the canonical specification and the sales-based NKPC under CES

demand. The improvement comes from including the inventory-sales ratio as an observ-

able, which captures the time-varying markup channel missing from standard NKPCs. We

further show that this specification accounts for two prominent episodes—the 2009–2011

missing disinflation and the COVID-era surge—underscoring the role of inventories as an
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indicator of inflationary pressures. Note that this section provides a reduced-form empiri-

cal assessment of aggregate inflation dynamics; causal effects of the inventory channel are

established earlier in the industry-level regressions.

5.1 Empirical specification and data

We estimate three reduced-form (semi-structural) Phillips curve specifications with theory-

motivated exclusion and equality restrictions:

π̂t = α0 + α1π̂t−1 + α2Etπ̂t+1 + α3m̂ct + α4(Etr̂t,t+1 + Etm̂ct+1) + α5îst + εt, (17)

where εt denotes the regression error. The first sets α4 = α5 = 0, yielding the canonical

NKPC without inventories, as in Gaĺı and Gertler (1999), with both backward- and forward-

looking inflation expectations. The second sets α3 = α5 = 0, corresponding to the sales-

based NKPC under CES demand (Proposition 1). The third imposes the equality restriction

α3 = −α4, delivering the stock-based NKPC (Proposition 2) with expected marginal cost

growth expressed under zero inventory depreciation and no average time discounting.11

To estimate these regressions, we compile macroeconomic variables at quarterly fre-

quency. Since retail inventory management is primarily relevant within the goods sector,

our analysis focuses on accounting for goods inflation, though we also report results using

headline inflation for comparison. Accordingly, our baseline regression defines π̂t as the

annualized quarterly inflation of the goods component of Personal Consumption Expen-

ditures (PCE). For expected inflation Etπ̂t+1, we use both the mean professional inflation

forecast from the Survey of Professional Forecasters (SPF) and the mean household infla-

tion forecast from the Michigan Survey, each reflecting year-ahead expectations. To our

knowledge, no survey provides separate forecasts specifically for goods inflation. By esti-

mating an unrestricted coefficient on inflation expectations, we allow for proportionality

between expectations of headline and goods inflation.

To proxy for the real marginal cost, m̂ct, we use the unemployment gap (scaled by -1),

a commonly used measure of economic slack (e.g., Stock and Watson, 2020). Specifically,

11Although results are robust to relaxing the restriction, estimating α3 and α4 separately induces mul-
ticollinearity due to the high correlation between current and expected marginal cost.
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we define the unemployment gap as the difference between the quarterly unemployment

rate and the quarterly estimate of the Non-Accelerating Inflation Rate of Unemployment

(NAIRU) from the Congressional Budget Office (CBO). Because our Phillips curve specifi-

cation includes expected future real marginal cost, Etm̂ct+1, using the unemployment gap is

particularly useful, as we can construct a comparable expectation-based proxy. We define

the expected future unemployment gap as the difference between the SPF’s year-ahead

unemployment forecast and the year-ahead NAIRU estimate from the CBO.

Alternative proxies for the real marginal cost used in the literature include the output

gap, the labor share, the vacancy-to-unemployment ratio, and unit labor cost. Because the

NKPC model with inventories requires a measure of expected future real marginal cost,

however, constructing such a measure using these alternatives is more challenging.12

We define the expected real interest rate, Etr̂t,t+1, as the effective Federal Funds rate

minus the SPF’s year-ahead inflation forecast.

Finally, for the inventory-sales ratio, îst, we aggregate inventory and sales data from

the retail and wholesale sectors. We detrend this variable using the Hamilton (2018) filter.

The sample spans 1983q3–2025q1. The inventory-sales ratio is constructed from 1980q4

onward—when wholesale inventories become available—and this earlier start is used to

implement the Hamilton filter, which regresses the ratio on its 8th–11th lags.

5.2 NKPC regression results

We now present regression estimates for the three Phillips curve specifications.

5.2.1 Evidence for the stock-based NKPC

Our derivation of multiple NKPC representations is useful because, under CES demand,

the sales-based and stock-based specifications should be empirically equivalent. If their

empirical fit differs in favor of the stock-based specification, this provides evidence against

CES and, through the lens of our model, implies that aggregate inflation dynamics require

channels of time-varying markups beyond those captured by nominal rigidity.

12Nevertheless, in the Appendix we show that our main results are robust to the choice of the marginal
cost proxy in a canonical NKPC specification augmented with the inventory-sales ratio, suggesting that
our findings are unlikely to be driven by the specific proxy used.
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Table 3: NKPC Estimates for Goods and Headline Inflation (SPF Expectations)

Goods PCE Inflation Headline PCE Inflation

(1) (2) (3) (4) (5) (6)

Lagged inflation 0.342∗∗ 0.343∗∗∗ 0.047 0.455∗∗∗ 0.463∗∗∗ 0.197

(0.131) (0.130) (0.100) (0.135) (0.140) (0.120)

Exp. inflation (SPF) 0.369 0.373 1.173∗∗ 0.321∗∗ 0.263∗∗ 0.665∗∗∗

(0.284) (0.250) (0.459) (0.160) (0.128) (0.225)

Marginal cost 0.030 0.074

(0.145) (0.063)

Exp. marginal cost 0.001 0.038

(0.092) (0.047)

Exp. marginal cost growth 0.048 0.089

(0.166) (0.094)

IS ratio -0.430∗∗∗ -0.189∗∗∗

(0.092) (0.048)

Constant -0.282 -0.319 -2.299∗∗ 0.461 0.548∗ -0.028

(0.868) (0.761) (1.158) (0.313) (0.299) (0.530)

Observations 167 167 167 167 167 167

Adjusted R-squared 0.130 0.130 0.375 0.315 0.313 0.500

Notes: Variable definitions are provided in the main text. Expected inflation is from the SPF; results
using the Michigan Survey are reported in the Appendix. Newey–West standard errors are reported in
parentheses. * p<0.10, ** p<0.05, *** p<0.01.

Table 3 reports OLS estimates of the three specifications in equation (17), using goods

and headline PCE inflation as dependent variables and SPF inflation expectations. For

goods inflation, the stock-based NKPC in column (3) attains a noticeably higher adjusted

R-squared than both the canonical specification (column 1) and the sales-based NKPC

under CES demand (column 2). The same pattern holds for headline inflation: column

(6) dominates columns (4) and (5). The better fit of the stock-based NKPC relative to

the CES-demand specification indicates that the data favor our non-CES specification

with time-varying markups. Taken together with the industry-level evidence, these results
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provide plausible evidence that time-varying markups matter for inflation dynamics.13

5.2.2 Why the stock-based NKPC fits better: The role of inventories

Why does the stock-based NKPC fit better? Inspecting columns (3) and (6), the inventory-

sales ratio enters with a negative and statistically significant coefficient, as predicted by

equation (16), while variables related to marginal cost dynamics—including both cur-

rent and expected marginal cost—are not significant. The magnitudes are economically

meaningful: a one-standard-deviation decline in the inventory-sales ratio is associated with

roughly a 2 percentage-point increase in goods inflation and a 0.9 percentage-point increase

in headline inflation. By comparison, a one-standard-deviation rise in SPF expected infla-

tion is associated with increases of about 1.1 and 0.6 percentage points, respectively. These

results indicate that the inventory-sales ratio plays an important role in accounting for

inflation dynamics, likely operating through goods prices.

In column (3), once the inventory-sales ratio is included, the coefficient on SPF expec-

tations strengthens substantially, while the lagged goods inflation term becomes negligible.

This suggests that lagged goods inflation had been proxying for omitted inventory dynam-

ics, attenuating the role of expectations. With inventories included, the SPF term becomes

more informative, consistent with goods-price dynamics being shaped jointly by profes-

sional forecasts and retailers’ inventory management decisions.

Using the Michigan Survey for inflation expectations yields a complementary message,

as shown in the Appendix. The coefficients of the goods NKPC are stable, and lagged goods

inflation is not significant even in specifications without inventories, consistent with house-

hold expectations already playing an important role in the Phillips curve (Coibion et al.,

2018). Adding the inventory-sales ratio in this setting leaves coefficients largely unchanged

but increases explanatory power, indicating that inventories provide incremental informa-

tion largely orthogonal to the channel captured by Michigan expectations. In this sense,

inventories complement household expectations by improving fit without undermining the

structural stability of the NKPC.

13In the Appendix, we show that other metrics such as the Akaike information criterion or the one-
quarter-ahead root mean squared errors, which also generally favor the stock-based NKPC.
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Table 4: Semipartial R-squared (Unique Contribution of Regressors)

Goods PCE Inflation Headline PCE Inflation

Panel A: SPF Expectations

Lagged inflation 0.16 2.39

Exp. inflation 4.24 5.03

Exp. marginal cost growth 0.04 0.56

IS ratio 24.43 18.86

Total R-squared 39.03 51.18

Panel B: Michigan Expectations

Lagged inflation 0.02 0.08

Exp. inflation 9.08 12.23

Exp. marginal cost growth 1.54 5.04

IS ratio 15.07 10.62

Total R-squared 43.87 58.38

Notes: Semipartial R-squared values report each regressor’s marginal contribution conditional on all others.
All values are percentages.

Our findings are robust across a wide range of specifications and data choices.14 Re-

estimating the model with alternative marginal cost proxies commonly used in the liter-

ature confirms that the inventory-sales ratio remains a strong and significant predictor

of inflation.15 We further estimate the NKPC using core goods inflation—adjusting the

inventory-sales ratio accordingly—and again obtain results consistent with our main con-

clusion. Finally, testing a nonlinear specification of the inventory term shows that the linear

mechanism continues to dominate.

5.2.3 Orthogonal contribution of inventories

To isolate the contribution of the inventory–sales ratio in the stock-based NKPC and com-

pare it with other regressors, we report the semipartial R-squared. Following the Frisch-

14See Appendix for details.
15As discussed earlier, we estimated the canonical NKPC augmented with the inventory-sales ratio, rather

than the stock-based NKPC, because expected marginal cost proxies are not available for this robustness
check.
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Waugh-Lovell logic, we orthogonalize each regressor with respect to the other controls and

then computing its explanatory power. This statistic captures the regressor’s unique (or-

thogonal) contribution and, in general, does not sum to total R-squared across regressors.

Recall that, in our framework, the component of the inventory-sales ratio orthogonal to

expected marginal cost growth primarily reflects movements in time-varying markups; ac-

cordingly, its semipartial R-squared provides a conservative measure of the markup channel.

Table 4 reports results for both goods and headline inflation using expectations from

either the SPF or the Michigan Survey. For SPF expectations (Panel A), the inventory-

sales ratio accounts for a substantial 24.4 percent, far exceeding the marginal cost and

inflation expectations channels in terms of orthogonal contributions. This indicates that

variation in the inventory-sales ratio orthogonal to marginal cost and inflation expectations

is quantitatively important for goods inflation. A similar, though smaller, role appears for

headline inflation, where the inventory-sales ratio’s semipartial R-squared is about 18.9

percent.

With Michigan expectations (Panel B), expected inflation absorbs a larger share of

variation in goods inflation (about 9.1 percent). Even so, the inventory-sales ratio remains

the single largest semipartial R-squared component (roughly 15 percent). For headline

inflation, expected inflation contributes more (about 12.2 percent) than the inventory-sales

ratio (about 10.6 percent), but the latter remains economically meaningful. In both cases,

the inventory-sales ratio adds distinct, orthogonal information not contained in Michigan

expectations and therefore complements them in accounting for inflation dynamics.

5.3 The stock-based NKPC and recent inflation episodes

Having established the superior fit of the stock-based NKPC in the full sample, we next

examine whether the framework can also account for two specific inflation episodes that

have attracted considerable attention in the literature.

5.3.1 The 2009–2011 missing disinflation puzzle

The 2009–2011 missing disinflation puzzle has been widely discussed in the literature, with

a prominent resolution proposed by Coibion and Gorodnichenko (2015). Using the SPF,
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they show that a version of the canonical NKPC substantially underpredicts inflation over

this period. However, when substituting inflation expectations from the Michigan Survey—

where household expectations rose more sharply—the puzzle largely disappears. This im-

plies that the puzzle is conditional on the choice of the inflation expectation measure,

particularly the SPF.

We offer an alternative explanation using the stock-based NKPC while still conditioning

on SPF expectations. Panel C of Figure 2 plots actual headline PCE inflation alongside

inflation predicted by both the canonical and stock-based NKPCs. The canonical specifica-

tion predicts four-quarter inflation to remain below 2 percent between 2009 and 2011 (the

first shaded region), while observed inflation reached 3 percent. In contrast, the stock-based

NKPC successfully tracks the actual inflation path. This improvement coincides with a pe-

riod of below-trend inventory-sales ratios, consistent with widespread inventory liquidation

by financially constrained firms following the 2008 credit shock, as analyzed by Kim (2021).

For comparison, Panel D uses a specification similar to Coibion and Gorodnichenko

(2015) with Michigan inflation expectations. In this case, the canonical NKPC also aligns

more closely with observed inflation, and the stock-based NKPC remains consistent with

the data.

5.3.2 The COVID-era inflation surge

The stock-based NKPC also captures the surge in inflation—particularly for goods—during

the COVID period. As shown in Panels A and B of Figure 2, goods inflation rose to 10

percent between 2021 and 2022 (the second shaded region), a surge that the stock-based

NKPC better tracks in both panels. In contrast, the canonical NKPC explains only a

smaller portion of the rise, predicting a peak inflation of roughly 4 percent when using SPF

expectations (Panel A) and 6 percent with Michigan expectations (Panel B). Moreover,

the stock-based NKPC better captures the sharp reversal in goods inflation following the

peak, underscoring the complementary role of the inventory-sales ratio in accounting for

goods inflation dynamics, especially during periods of swift adjustment.

Turning to headline inflation, the tight inventory-sales ratio, which played a central

role in the surge in goods inflation, also contributed significantly to the rise in headline
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Figure 2: Model Fit
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(b) Goods PCE Inflation – Michigan
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(c) Headline PCE Inflation – SPF
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(d) Headline PCE Inflation – Michigan
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Notes: Panel A shows the model fit to goods PCE inflation using year-ahead SPF inflation forecasts. Panel
B presents the model fit to goods PCE inflation using year-ahead Michigan inflation forecasts. Panel C
shows the model fit to headline PCE inflation with year-ahead SPF forecasts, while Panel D presents the
fit using year-ahead Michigan forecasts. In all panels, the first shaded region corresponds to 2009q1–2011q4
and the second to 2021q1-2022q4.

inflation. The stock-based NKPC not only better matches the magnitude of the headline

surge than the canonical specification, but also more accurately predicts its earlier timing—

showing a peak that arrives sooner and aligns more closely with the data. This improvement

is pronounced when using SPF expectations (Panel C), and while the magnitude remains

similar with Michigan expectations (Panel D), the earlier predicted peak remains consistent

with the observed timing.16

16In the Appendix, COVID-era pseudo-out-of-sample inflation forecasts show a similar pattern, though
all models exhibit a delayed pickup in inflation relative to the data.
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6 Conclusion

This paper investigates whether the retail price margin channel—whereby inventory scarcity

amplifies retail price margins—can help explain observed inflation dynamics. By model-

ing the retailer’s joint decision over pricing and inventory management, and constructing

industry-level instruments from supply chain disruptions that plausibly affect only the

retailer’s stocking behavior, we identify the elasticity of price margins with respect to

inventory stocks. We estimate this elasticity to be negative, implying that tighter retail

inventories are systematically associated with higher price margins. This evidence supports

the view that retail prices are shaped not only by cost-push factors but also by the strategic

pricing behavior of firms facing inventory constraints.

Integrating this mechanism into a NKPC framework, we show that the inventory-sales

ratio serves as a powerful and observable proxy for retail markups. The resulting stock-

based NKPC delivers a substantially improved empirical fit, successfully capturing key

inflationary episodes such as the 2009–2011 missing disinflation and the COVID-era surge

that originated from the goods sector. These findings suggest that incorporating retail

inventory dynamics enhances our understanding of inflation—particularly during periods

when supply chains are constrained—by capturing a critical source of time-varying markups

often overlooked in standard NKPC models.

Looking ahead, several avenues for further research remain. One is to examine how

inventory dynamics interact with nonlinear NKPC specifications, for example by allowing

the slope of the Phillips curve to vary across regimes of inventory tightness or demand

pressure. Another is to investigate whether the inventory-based mechanism can account

for the time variation in the slope of the NKPC documented in the empirical literature.

More broadly, extending the framework to incorporate sectoral heterogeneity or to model

the interaction between retail inventories and upstream supply chain frictions could yield

new insights into how microeconomic bottlenecks shape aggregate inflation dynamics.
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Ravn, Morten, Stephanie Schmitt-Grohé, and Martin Uribe, “Deep Habits,” The

Review of Economic Studies, 2006, 73, 195–218.

Reis, Ricardo, “Four Mistakes in the Use of Measures of Expected Inflation,” AEA Papers

and Proceedings, May 2023, 113, 47–51.

Rotemberg, Julio J., “Sticky Prices in the United States,” Journal of Political Economy,

December 1982, 90 (6), 1187–1211.

39



Shapiro, Adam H., “Decomposing Supply- and Demand-Driven Inflation,” Journal of

Money, Credit and Banking, Forthcoming.

Stock, James H. and Mark W. Watson, “Slack and Cyclically Sensitive Inflation,”

Journal of Money, Credit and Banking, 2020, 52 (S2), 393–428.

40



Online Appendix to Retail inventories and inflation
dynamics: The price margin channel

Neil Mehrotra∗ Hyunseung Oh† Julio Ortiz‡

Table of Contents

A Appendix to Section 1 3

B Appendix to Section 3 4

B.1 Data sources and construction of variables . . . . . . . . . . . . . . . . . . 4

B.1.1 Aggregate variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

B.1.2 Manufacturing-level variables . . . . . . . . . . . . . . . . . . . . . 4

B.1.3 Retail-level variables . . . . . . . . . . . . . . . . . . . . . . . . . . 6

B.2 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B.3 First-stage regression results . . . . . . . . . . . . . . . . . . . . . . . . . . 10

B.4 Balance tests of QSPC instrument . . . . . . . . . . . . . . . . . . . . . . . 11

B.5 Adjusted QSPC instrument . . . . . . . . . . . . . . . . . . . . . . . . . . 13

C Appendix to Section 4 15

C.1 Deriving the demand function . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.2 Details of Klenow and Willis (2016) . . . . . . . . . . . . . . . . . . . . . . 16

C.3 Full optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.3.1 Baseline with inventories . . . . . . . . . . . . . . . . . . . . . . . . 18

C.3.2 Without inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D Appendix to Section 5 23

D.1 Specification with Michigan Survey inflation expectations . . . . . . . . . . 23

∗Federal Reserve Bank of Minneapolis. E-mail: neil.mehrotra@mpls.frb.org.
†Federal Reserve Board. E-mail: hyunseung.oh@frb.gov.
‡Federal Reserve Board. E-mail: julio.l.ortiz@frb.gov.

1

mailto:neil.mehrotra@mpls.frb.org
mailto:hyunseung.oh@frb.gov
mailto:julio.l.ortiz@frb.gov


D.2 NKPC model fit and forecast performance . . . . . . . . . . . . . . . . . . 25

D.3 Alternative marginal cost proxies . . . . . . . . . . . . . . . . . . . . . . . 28

D.4 Core goods PCE inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

D.5 Introducing a nonlinear inventory specification . . . . . . . . . . . . . . . . 33

2



A Appendix to Section 1

To calculate the share of retail and wholesale trade margins in the purchasers’ value of PCE

goods, we use the PCE bridge summary table published by the BEA. Figure A.1 shows

the annual composition between 2007 and 2023. Producers’ value accounts for roughly 50

percent of purchasers’ value, a share that has gradually declined over time. Retail margins

represent between 30 and 40 percent, with their share rising in recent years. Wholesale

margins remain around 10 percent, while transportation costs account for only a small

share.

Figure A.1: Breakdown of Purchasers’ Value for PCE Goods

2008 2010 2012 2014 2016 2018 2020 2022
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Retail Trade Margin Wholesale Trade Margin Transportation Cost Producer Value

Notes: Data come from the PCE bridge table published by the BEA. Bars show producers’ value, trans-
portation cost, wholesale trade margin, and retail trade margin as shares of purchasers’ value for PCE
goods.
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B Appendix to Section 3

B.1 Data sources and construction of variables

In this section, we detail the data used in our empirical analysis, the sources through which

we collect this information, and steps taken to clean or construct certain variables.

B.1.1 Aggregate variables

The two aggregate time series used in our analysis are the ACR and demand-driven infla-

tion.

Bai et al. (2024) ACR measure. The ACR is a weighted average of the congestion

rates for the top 50 container ports worldwide. The congestion rate for a given port is

defined as the number of delayed ship visits relative to the total number of ship visits.

Shapiro (Forthcoming) demand-driven inflation. We use the monthly series that

reflects the demand-driven component of year-over-year core PCE inflation. Shapiro (Forth-

coming) estimates this component by assuming sign restrictions of various categories of

inflation. Accordingly, this series tracks the share of categories that are experiencing at

least a demand shock.

B.1.2 Manufacturing-level variables

BLS. We collect monthly PPI data from the BLS.

BEA. We construct our measure of import exposure for manufacturing industries by

using the BEA’s import matrix, a supplement to the I-O tables. The import matrix provides

us with the dollar value imports of intermediate inputs from U.S. manufacturing industries.

Using this information, we construct import shares in the year 2007.

For the construction of our industry-specific demand proxy, detailed below, we also

collect industry-level quarterly gross output quantities and prices from the BEA.
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Census Bureau. Plants responding to the QSPC report the reasons why they produce

below capacity. We focus on responses citing “insufficient material supply” as the con-

straint. These data are publicly available at a quarterly frequency beginning in 2013q1,

and available upon request back to 2008q1. Among the 21 three-digit NAICS manufac-

turing industries, 14 have a complete time series for the share of plants operating below

capacity and reporting insufficient material supply, while the remaining 7 industries have

breaks in coverage. To ensure that we can accurately estimate and residualize the demand-

driven and serially correlated components of the data, we restrict our analysis to the 14

industries with complete time series. These industries are:

1. NAICS 311 – Food manufacturing

2. NAICS 321 – Wood product manufacturing

3. NAICS 324 – Petroleum & coal products manufacturing

4. NAICS 325 – Chemical manufacturing

5. NAICS 326 – Plastics & rubber product manufacturing

6. NAICS 327 – Nonmetallic mineral product manufacturing

7. NAICS 331 – Primary metal manufacturing

8. NAICS 332 – Fabricated metal product manufacturing

9. NAICS 333 – Machinery manufacturing

10. NAICS 334 – Computers & electronic product manufacturing

11. NAICS 335 – Electrical equipment, appliances & component manufacturing

12. NAICS 336 – Transportation equipment manufacturing

13. NAICS 337 – Furniture & related product manufacturing

14. NAICS 339 – Miscellaneous manufacturing
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Constructing industry-specific demand. Our QSPC shift variable is constructed by

residualizing the raw QSPC data on an industry-specific demand proxy. This demand proxy

is constructed using principal component analysis. For each manufacturing industry, we

collect quarterly gross output quantities and prices from the industry accounts available

through the BEA. We calculate the four-quarter percent change in gross output quantities

and prices, and extract a component that loads positively onto these two series. Intuitively,

a demand shock would lead prices and quantities to move in the same direction. A four-

quarter percent change allows us to extract a relatively smoother demand proxy for each

industry and it also aligns with the aggregate demand proxy that we use (detailed above).

Our QSPC IV results are largely unchanged though slightly noisier when we specify a

one-quarter percent change instead.

B.1.3 Retail-level variables

BLS. We collect monthly average hourly earnings, hours worked, and PPI data from the

BLS. Note that the PPI data for retail and wholesale industries is the gross margin (i.e.,

the difference between the current selling price and the current aquisiton price for a good).

The PPI series for NAICS retailer 449 (Furniture, home furnishings, electronics, and

appliance retailers) is only available starting in December 2022 (based on NAICS 2022

definitions). To obtain a full history of observations for this 3-digit industry, we combine the

PPI of NAICS 442 (furniture stores, from the 2017 definitions) and NAICS 443 (electronic

stores, from the 2017 definitions). The combined series is a weighted average of the PPI of

NAICS 442 and 443 where we use a constant weight to construct the average. Specifically,

we take the following steps:

1. Download the discontinued PPI series for retailers 442 and 443 from the BLS website.

2. Download the current PPI series for retailer 449 from the BLS website.

3. Download gross retail margin data from the Annual Retail Trade Survey: 2022 (re-

stated). This ”restated” release uses NAICS 2017.

4. Compute weights for retailers 442 and 442, defined as the average margin for each of

these two industries from 2019-2022. The weights are about 0.7 and 0.3, respectively.
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5. Normalize PPI for industries 442 and 443 such that they equal 100 in December 2022.

Then construct a weighted average of the two series, where the weights are taken from

the previous step.

6. Splice the PPI series for industry 449.

BEA. We collect real sales as well as real inventory-sales ratios from the National Income

and Product Accounts Underlying Tables (Table 2BU and 3BU), available through the

BEA.

In addition, we collect our measure of retail exposure from the 2007 I-O use table.

From the I-O use table, we obtain the value of inputs purchased by a given retail industry

from a given manufacturing industry in 2007. We construct the retail exposure share by

dividing by the total value of inputs (manufacturing and non-manufacturing) used by a

given retailer.
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B.2 Summary statistics

Table B.1 presents the summary statistics for each variable and lists the wholesale and

retail industries included in our analysis.

Table B.1: Summary Statistics and Industry Names

Panel A: Summary Statistics Mean Median Std.

One-quarter Difference
Inventory-sales ratio -0.217 -0.134 8.451
PPI (gross margin) 0.723 0.569 2.888
Average hourly earnings 0.724 0.632 1.2575
Real sales 0.664 0.589 5.949
Hours worked -0.061 0.140 3.298
Exposure-weighted mfg. PPI 0.108 0.092 0.362

Two-quarter Difference
Inventory-sales ratio -0.412 -0.276 9.975
PPI (gross margin) 1.456 1.161 3.994
Average hourly earnings 1.437 1.254 1.785
Real sales 1.207 1.165 6.948
Hours worked -0.169 0.227 4.002
Manufacturing PPI 0.223 0.139 0.616

Panel B: Industry Names

Industry NAICS code

Merchant wholesalers, durable goods 423
Merchant wholesalers, nondurable goods 424
Motor vehicle & parts dealers 441
Building materials & garden equipment & supply dealers 444
Food and beverage stores 445
Furniture, home furnishings, electronics, & appliance retailers 449
General merchandise stores 455
Clothing & clothing accessories retailers 458

Notes: Summary statistics are based on data for the sample period spanning January 2008 to March 2025.
Industry classifications follow NAICS 2022 definitions.

8



Table B.2: Shift-share IV summary statistics

Mean Median Std.

Panel A: One-quarter Difference (k = 1)
QSPC shift variable -4.7e-11 -0.005 0.064
ACR shift variable 1.5e-8 -0.020 1.794
QSPC shift-share variable -0.0003 -0.0005 0.005
ACR shift-share variable 3.7e-10 -0.0005 0.046

Panel B: Two-quarter Difference (k = 2)
QSPC shift variable 0.0007 -0.009 0.090
ACR shift variable -0.147 -0.664 2.723
QSPC shift-share variable 0.00002 -0.002 0.009
ACR shift-share variable -0.004 -0.015 0.070

Panel C: Share variables (percent) Retail exposure 0.612 0.256 1.317
Composite retail-mfg-import exposure 0.115 0.040 0.270

Notes: Summary statistics are based on data for the sample period spanning January 2008 to March 2025.
Industry classifications follow NAICS 2022 definitions.
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B.3 First-stage regression results

In the first-stage regressions corresponding to Table 1 (reported in Table B.3), both QSPC

material shortages and shipping congestion (ACR)—instruments designed to isolate supply-

side disruptions—significantly predict declines in the retail inventory-sales ratio.

Table B.3: First-stage Regression Results

Dependent variable: Inventory-sales ratio

Instrument QSPC ACR

Panel A: One-quarter Difference (k = 1)

Coefficient -2.123∗∗ -41.738∗∗∗

(0.895) (13.539)

Observations 536 232

Adjusted R-squared 0.91 0.94

Sample 2008q1–2025q1 2017q2–2024q2

Panel B: Two-quarter Difference (k = 2)

Coefficient -2.982∗∗∗ -75.436∗∗∗

(0.895) (13.480)

Observations 528 224

Adjusted R-squared 0.81 0.89

Sample 2008q2–2025q1 2017q3–2024q2

Notes: Driscoll–Kraay standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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B.4 Balance tests of QSPC instrument

To further support the validity of our QSPC-based shift-share instrument, Table B.4 reports

a set of falsification tests at both the manufacturer and retailer levels.

One concern is that the QSPC-based shift variable may not adequately control for de-

mand conditions at the manufacturer level. To assess this, we regress two standard demand

proxies—new orders-to-shipments and shipments—on the QSPC shift variable. Panel A re-

ports the results at one- and two-quarter horizons, and in all cases we find no statistically

significant relationship.

Another concern is that the instrument may not fully account for potential confounders

at the retailer level. To address this, we regress three retail outcomes—real sales, non-capital

and non-labor input costs, and labor productivity—on the QSPC shift-share variable.4 The

first three rows of Panel B show that none of these variables are related to the instrument.

Finally, we conduct a pre-trend test by regressing lagged outcomes on the QSPC instru-

ment. The fourth row of Panel B reports these results, which indicate that the QSPC-based

shift-share instrument does not predict outcomes prior to the shifts.

4Non-capital and non-labor input costs are from the BLS satellite series of net inputs to industry price
indexes, available from December 2018 for NAICS 441, 445, and 452, and from December 2020 for the
remaining retail and wholesale industries (see https://www.bls.gov/ppi/input-indexes).
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Table B.4: Balance Tests

One-quarter Difference Two-quarter Difference

Coefficient Std. error Obs. Coefficient Std. error Obs.

Panel A: Manufacturer-level

New orders-to-shipments 0.004 (0.032) 470 0.033 (0.040) 460

Shipments -0.015 (0.026) 936 -0.057 (0.038) 916

Panel B: Retailer-level

Real sales -0.035 (0.498) 528 0.236 (0.733) 528

Non-labor, non-capital costs 0.121 (0.435) 96 -0.254 (0.375) 91

Labor productivity 0.272 (0.250) 528 0.144 (0.104) 528

Lagged gross price margin 0.818 (0.509) 520 0.962 (0.854) 512

Notes: Each row reports regressions at three-month and six-month horizons in which the row variable is
the dependent variable. Panel A reports regressions of the row variable against the QSPC shift variable,
controlling for manufacturing industry fixed effects and time fixed effects. Panel B reports regressions of
the row variable against the QSPC shift-share variable, controlling for the same controls as in regression
(3) of the main text. Driscoll-Kraay standard errors are reported in the std. error column. * p<0.10, **
p<0.05, *** p<0.01.
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B.5 Adjusted QSPC instrument

Ideally, we would observe the extent to which capacity utilization declines among plants

operating below capacity. Instead, our QSPC variable of interest is constructed as the share

of plants reporting material shortages relative to all plants operating below capacity. As

a result, it is possible, at least in principle, for our QSPC measure to rise even as overall

capacity utilization increases. To address this potential measurement concern, we normalize

the QSPC variable by capacity utilization in each manufacturing industry, yielding an

“adjusted” QSPC variable. We then residualize this adjusted variable as described above.

This adjustment mildly strengthens the instrument, as reported in Table ??, suggesting

that our baseline QSPC instrument is relatively robust to potential mismeasurement.
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Table B.5: Industry Regression Results: Adjusted QSPC

Dependent variable: Gross price margin

Estimation method OLS IV

Instrument Adj. QSPC Adj. QSPC, ACR

Panel A: One-quarter Difference (k = 1)

IS ratio -0.143∗∗∗ -0.518∗∗∗ -0.616∗∗∗

(0.038) (0.205) (0.186)

First-stage F-stat 6.77 13.24

AR Wald F (p-value) 0.070 <0.001

Hansen J (p-value) 0.910

Observations 536 536 232

Sample 2008q1–2025q1 2008q1–2025q1 2017q2–2024q2

Panel B: Two-quarter Difference (k = 2)

IS ratio -0.121∗∗ -0.725∗∗∗ -0.595∗∗∗

(0.048) (0.198) (0.068)

First-stage F-stat 16.46 14.35

AR Wald F (p-value) 0.005 <0.001

Hansen J (p-value) 0.200

Observations 536 528 224

Sample 2008q1–2025q1 2008q2-2025q1 2017q3–2024q2

Notes: Driscoll–Kraay standard errors are reported in parentheses. Instruments for the IV columns are:
reported material supply shortages from the Quarterly Survey of Plant Capacity (QSPC) and Average
Congestion Rate (ACR). * p<0.10, ** p<0.05, *** p<0.01.
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C Appendix to Section 4

In this section, we provide details on how we derived the non-CES demand function and

several necessary equations based on that. We also provide the retailers’ full optimality

conditions.

C.1 Deriving the demand function

Households minimize the cost in choosing each variety to satisfy the habit-adjusted con-

sumption variety:

cj,t ≡ sj,t − θsj,t−1,

taking as given the variety price as well as habits formed in the previous period:

min
cj,t

∫ 1

0

pj,tcj,tdj subject to

∫ 1

0

vj,tΥ

(
cj,t
vj,tCt

)
dj = 1.

The first order condition for each variety can be written as

pj,t =
λpt
Ct

Υ′
(

cj,t
vj,tCt

)
,

where λpt is the lagrange multiplier of the implicit function. If we define Pt as a price index

that satisfies

PtCt =

∫ 1

0

pj,tcj,tdj

in the optimum, we can invoke the Envelope theorem to get

PtCt = λpt

∫ 1

0

Υ′
(

cj,t
vj,tCt

)
cj,t
Ct

dj.
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Substituting out λpt , we obtain

Υ′
(

cj,t
vj,tCt

)
=
pj,t
Pt

∫ 1

0

Υ′
(

cj,t
vj,tCt

)
cj,t
Ct

dj.

Therefore, the demand function could be expressed as

cj,t = vj,tCtΥ
′−1

(
pj,t
Pt

Dt

)
,

where

Dt =

∫ 1

0

Υ′
(

cj,t
vj,tCt

)
cj,t
Ct

dj.

In terms of real sales, the demand function is

sj,t = vj,tCtΥ
′−1

(
pj,t
Pt

Dt

)
+ θsj,t−1. (C.1)

Note that the value of Pt could only be implicitly derived by plugging the demand function

back into the implicit function for the aggregator Ct:

1 =

∫ 1

0

vj,tΥ

(
cj,t
vj,tCt

)
dj =

∫ 1

0

vj,tΥ

(
Υ′−1

(
pj,t
Pt

Dt

))
dj.

C.2 Details of Klenow and Willis (2016)

Here, we derive several necessary equations of the Klenow and Willis (2016) specification

of the Kimball (1995) aggregator. Note that the Kimball aggregator satisfies

∫ 1

0

vjΥ(xj)dj = 1,

where xj = cj/(vjC). In the case of CES,

ΥCES(x) = x
η−1
η ,
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which implies that

C =

(∫ 1

0

v
1
η

j c
η−1
η

j dj

) η
η−1

.

The following equations are useful benchmarks for the CES:

Υ′
CES(x) =

η − 1

η
x−

1
η ,

Υ′−1
CES(x) =

(
η − 1

ηx

)η

,

(Υ′−1
CES)

′(x) = −η
x

(
η − 1

ηx

)η

,

In the case of Klenow and Willis (2016), we have

Υ′
KW (x) =

η − 1

η
exp

(
1− x

ψ
η

ψ

)
,

Υ′−1
KW (x) =

(
1 + ψ ln

(
η − 1

ηx

)) η
ψ

,

(Υ′−1
KW )′(x) = −η

x

(
1 + ψ ln

(
η − 1

ηx

))−ψ−η
ψ

.

We can verify that the above expressions are consistent with CES when ψ → 0.

Using the demand function (C.1), we have

pj = Υ′
(
sj − θsj,−1

vjC

)
PD,

which implies that

dpj
dsj

= Υ′′
(
sj − θsj,−1

vjC

)
PD

vjC
.
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Moreover, note that

− Υ′(x)

xΥ′′(x)
= ηx−

ψ
η .

Therefore, the price elasticity of demand could then be written as

η(sj) ≡ −d ln sj
d ln pj

= −pj
sj

dsj
dpj

= ηx
−ψ
η

j

(
sj − θsj,−1

sj

)
.

C.3 Full optimality conditions

C.3.1 Baseline with inventories

The lagrangian of the retailer is written as follows:

L =
∞∑
t=0

E0Λ0,t

[
pj,tsj,t −Qtyj,t + Ptmcj,t {yj,t + (1− δ)(aj,t−1 − sj,t−1)− aj,t}

+Ptκj,t

{(
aj,t
At

)ζ

Υ′−1

(
pj,t
Pt

Dt

)
Ct + θsj,t−1 − sj,t

}
− νp

2

(
pj,t
pj,t−1

− 1

)2

PtSt

]
.

Taking the first order conditions, we get

[pj,t] : sj,t = −κj,tDtCt

(
aj,t
At

)ζ

(Υ′−1)′
(
pj,t
Pt

Dt

)
+ νp

PtSt

pj,t−1

(
pj,t
pj,t−1

− 1

)
− νpEt

Λt,t+1pj,t+1Pt+1St+1

p2j,t

(
pj,t+1

pj,t
− 1

)
,

[aj,t] : mcj,t = ζκj,t

(
aj,t
At

)ζ−1

Υ′−1

(
pj,t
Pt

Dt

)
Ct

At

+ (1− δ)Et
Λt,t+1Pt+1

Pt

mcj,t+1,

[sj,t] :
pj,t
Pt

= κj,t + Et
Λt,t+1Pt+1

Pt

((1− δ)mcj,t+1 − θκj,t+1),

[yj,t] : mcj,t =
Qt

Pt

,

[mcj,t] : aj,t = yj,t + (1− δ)(aj,t−1 − sj,t−1),

[κj,t] : sj,t =

(
aj,t
At

)ζ

Υ′−1

(
pj,t
Pt

Dt

)
Ct + θsj,t−1.
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The nominal stochastic discount factor between period t and t+ 1 could be written as the

household’s subjective discount factor β, the effective real stochastic discount factor rt,t+1,

and the price indices:

Λt,t+1 = βrt,t+1
Pt

Pt+1

.

In a symmetric equilibrium, and replacing the stochastic discount factor with the com-

plete market equation, the first-order conditions could be rewritten as

[pj,t] : St = −κt(Υ′−1)′(1)Ct + νpStπt(πt − 1)− νpβEtrt,t+1St+1πt+1(πt+1 − 1),

[aj,t] : mct = ζκtΥ
′−1(1)

Ct

At

+ β(1− δ)Etrt,t+1mct+1,

[sj,t] : 1 = κt + βEtrt,t+1((1− δ)mct+1 − θκt+1),

[yj,t] : mct =
Qt

Pt

,

[mcj,t] : At = Yt + (1− δ)(At−1 − St−1),

[κj,t] : St = Υ′−1(1)Ct + θSt−1.

Note that Dt = 1 in a symmetric equilibrium and that the following conditions hold:

Υ′−1(1) =

(
1 + ψ ln

(
η − 1

η

)) η
ψ

, (Υ′−1)′(1) = −η
(
1 + ψ ln

(
η − 1

η

)) η
ψ
−1

.

The key steady-state conditions are

S = −κ(Υ′−1)′(1)C,

(1− β(1− δ))mc = ζκΥ′−1(1)
C

A
,

1 = (1− βθ)κ+ β(1− δ)mc,

C =
1− θ

Υ′−1(1)
S.
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This implies that

κ = − 1

1− θ

Υ′−1(1)

(Υ′−1)′(1)
=

1

η(1− θ)

(
1 + ψ ln

(
η − 1

η

))
,

mc =
1− (1− βθ)κ

β(1− δ)
,

ζ = −(1− β(1− δ))mc
(Υ′−1)′(1)

Υ′−1(1)

A

S
=

(1− β(1− δ))mc

η

(
1 + ψ ln

(
η − 1

η

))−1
A

S
.

Therefore, the optimal pricing condition could be log-linearized as

π̂t = βEtπ̂t+1 −
1

νp
(κ̂t + ĉt − ŝt).

The optimal stocking condition could be log-linearized as

m̂ct = (1− β(1− δ))(κ̂t + ĉt − ât) + β(1− δ)Et(r̂t,t+1 + m̂ct+1).

Substituting out κ̂t, we get

π̂t = βEtπ̂t+1 +
1

νp(1− β(1− δ))
[β(1− δ)Et(r̂t,t+1 + m̂ct+1)− m̂ct]−

1

νp
(ât − ŝt).

Note that the optimal stocking condition could also be written as

ât − ĉt = κ̂t +
1

1− β(1− δ))
[β(1− δ)Et(r̂t,t+1 + m̂ct+1)− m̂ct],

meaning that the stock to habit-adjusted sales ratio depends on both the expected marginal

cost changes and the shadow value of the sales equation, which is linked to the price markup.

In turn, the optimal sales condition could be expressed as

κ̂t = θβEt(r̂t,t+1 + κ̂t+1)−

[
η(1− θ)

(
1 + ψ ln

(
η − 1

η

))−1

− (1− θβ)

]
Et(r̂t,t+1 + m̂ct+1).

20



C.3.2 Without inventories

The lagrangian of the retailer without inventories is written as follows:

L =
∞∑
t=0

E0Λ0,t

[
pj,tsj,t −Qtyj,t + Ptmcj,t {yj,t − sj,t}

+Ptκj,t

{
Υ′−1

(
pj,t
Pt

Dt

)
Ct + θsj,t−1 − sj,t

}
− νp

2

(
pj,t
pj,t−1

− 1

)2

PtSt

]
.

Taking the first order conditions, we get

[pj,t] : sj,t = −κj,tDtCt(Υ
′−1)′

(
pj,t
Pt

Dt

)
+ νp

PtSt

pj,t−1

(
pj,t
pj,t−1

− 1

)
− νpEt

Λt,t+1pj,t+1Pt+1St+1

p2j,t

(
pj,t+1

pj,t
− 1

)
,

[sj,t] : κj,t =
pj,t
Pt

−mcj,t + Et
Λt,t+1Pt+1

Pt

θκj,t+1,

[yj,t] : mcj,t =
Qt

Pt

,

[mcj,t] : yj,t = sj,t,

[κj,t] : sj,t = Υ′−1

(
pj,t
Pt

Dt

)
Ct + θsj,t−1.

In a symmetric equilibrium, the first-order conditions could be rewritten as

[pj,t] : St = −κt(Υ′−1)′(1)Ct + νpStπt(πt − 1)− νpβEtrt,t+1St+1πt+1(πt+1 − 1),

[sj,t] : κt = 1−mct + θβEtrt,t+1κt+1,

[yj,t] : mct =
Qt

Pt

,

[mcj,t] : Yt = St,

[κj,t] : St = Υ′−1(1)Ct + θSt−1.
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The key steady-state conditions are

S = −κ(Υ′−1)′(1)C,

1 = (1− βθ)κ+mc,

C =
1− θ

Υ′−1(1)
S.

This implies that

κ = − 1

1− θ

Υ′−1(1)

(Υ′−1)′(1)
=

1

η(1− θ)

(
1 + ψ ln

(
η − 1

η

))
,

mc = 1− (1− βθ)κ.

Therefore, the optimal pricing condition could be log-linearized as

π̂t = βEtπ̂t+1 −
1

νp
(κ̂t + ĉt − ŝt).

The optimal sales condition could be expressed as

κ̂t = θβEt(r̂t,t+1 + κ̂t+1)−

[
η(1− θ)

(
1 + ψ ln

(
η − 1

η

))−1

− (1− θβ)

]
m̂ct.

22



D Appendix to Section 5

In this section, we assess the robustness of our results along four dimensions: (i) replacing

SPF-based inflation expectations with those from the Michigan Survey; (ii) employing

alternative proxies for real marginal cost; (iii) estimating the NKPC with core goods PCE

inflation as the dependent variable; and (iv) introducing a nonlinear inventory specification.

Finally, we also examine pseudo-out-of-sample performance.

D.1 Specification with Michigan Survey inflation expectations

Our main results are robust to using inflation expectations from the Michigan Survey in-

stead of the SPF. Table D.1 is analogous to Table 3 in the main text but replaces SPF

expectations with those from the Michigan Survey. For headline PCE inflation, the Michi-

gan Survey improves the fit of all three NKPC specifications in columns (4)-(6) relative to

their SPF-based counterparts, as measured by the adjusted R-squared. Nevertheless, our

main results hold: the stock-based NKPC in column (6) delivers the best fit and retains a

significantly negative coefficient on the inventory-sales ratio. For goods PCE inflation, the

improvement in fit from adding the inventory-sales ratio—comparing column (3) to column

(1)—is even larger than in the headline case, as reflected in the adjusted R-squared.
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Table D.1: NKPC Estimates for Goods and Headline Inflation (Michigan Expectations)

Goods PCE Inflation Headline PCE Inflation

(1) (2) (3) (4) (5) (6)

Lagged inflation 0.137 0.136 -0.017 0.160 0.147 0.040

(0.108) (0.107) (0.104) (0.098) (0.104) (0.102)

Exp. inflation (Michigan) 1.549∗∗∗ 1.564∗∗∗ 1.250∗∗∗ 0.945∗∗∗ 0.933∗∗∗ 0.810∗∗∗

(0.463) (0.463) (0.360) (0.210) (0.207) (0.149)

Marginal cost -0.033 0.090

(0.160) (0.065)

Exp. marginal cost -0.029 0.066

(0.091) (0.046)

Exp. marginal cost growth 0.226 0.212∗∗∗

(0.149) (0.080)

IS ratio -0.332∗∗∗ -0.137∗∗∗

(0.080) (0.039)

Constant -5.256∗∗∗ -5.285∗∗∗ -4.048∗∗∗ -1.687∗∗∗ 1.680∗∗∗ -1.105∗∗

(1.687) (1.703) (1.341) (0.644) (0.659) (0.494)

Observations 167 167 167 167 167 167

Adjusted R-squared 0.274 0.275 0.425 0.465 0.471 0.574

Notes: Variable definitions are provided in the main text. Expected inflation is from the Michigan Survey.
Newey–West standard errors are reported in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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D.2 NKPC model fit and forecast performance

Table D.2 reports three model comparison measures: the Akaike (AIC) and Bayesian (BIC)

information criteria, which gauge in-sample fit with a penalty for model complexity, and

the one-quarter-ahead root mean squared error (RMSE), a pseudo-out-of-sample accuracy

measure computed from a recursive regression starting with 1981q3-1995q1 and expanding

through 2025q1. For all three metrics, lower values indicate better performance. Across

goods and headline inflation, and using either SPF or Michigan inflation expectations, all

measures favor the stock-based NKPC.

Table D.2: In-sample Fit and One-quarter-ahead Forecast Performance

Canonical NKPC CES-demand NKPC Stock-based NKPC

Panel A: Goods PCE Inflation – SPF

AIC 865.98 866.02 811.72

BIC 878.46 878.49 827.31

RMSE 3.73 3.73 3.45

Panel B: Goods PCE Inflation – Michigan

AIC 835.72 835.63 797.92

BIC 848.20 848.10 813.51

RMSE 3.87 3.88 3.69

Panel C: Headline PCE Inflation – SPF

AIC 595.83 596.17 544.21

BIC 608.30 608.64 559.80

RMSE 1.72 1.72 1.58

Panel D: Headline PCE Inflation – Michigan

AIC 554.61 552.73 517.58

BIC 567.08 565.20 533.17

RMSE 1.77 1.74 1.61

Notes: The CES-demand NKPC corresponds to the sales-based specification under CES demand. AIC
denotes the Akaike Information Criterion and BIC the Bayesian Information Criterion. RMSE is the one-
quarter-ahead root mean squared error, computed from a recursive regression beginning with the sample
period 1981q3–1995q1. Lower AIC and BIC values indicate better in-sample fit, while lower RMSE indicates
superior out-of-sample performance.
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For a formal pseudo-out-of-sample predictive-accuracy comparison between the stock-

based and CES-demand NKPCs, we report the Diebold-Mariano (DM) statistics. Again,

we re-estimate each specification recursively, starting with 1981q3-1995q and expanding

through 2025q1, and generate one-quarter-ahead forecasts. DM statistics are computed

from squared forecast errors. Table D.3 reports results for our four specifications, where

positive values favor the stock-based NKPC over the CES-demand NKPC.

In the full sample, DM statistics generally favor the stock-based specification, although

power is limited given the reduced pseudo-out-of-sample size. By subsample, the stock-

based NKPC delivers significantly higher predictive accuracy for goods inflation in the

latter period (2010q1–2025q1). For headline inflation, gains are significant in the earlier

period (1995q1-2009q4) and less clear thereafter. Overall, the DM tests tend to favor the

stock-based NKPC, with weaker power in shorter windows.

Table D.3: Diebold-Mariano Tests: Recursive Pseudo-out-of-sample (One-quarter-ahead)

1995q1-2025q1 1995q1-2009q4 2010q1-2025q1

Goods PCE – SPF 1.234 -0.263 1.373∗

Goods PCE – Michigan 1.138 -1.049 1.733∗∗

Headline PCE – SPF 1.172 1.734∗∗ 0.683

Headline PCE – Michigan 1.486∗ 1.810∗∗ 1.346∗

Notes: The table reports Diebold-Mariano statistics. Positive values indicate lower squared forecast errors
for the stock-based NKPC relative to the CES-demand NKPC. One-quarter-ahead forecasts are generated
from recursive estimations starting with 1981q3–1995q1 and expanding through 2025q1. Diebold-Mariano
statistics are based on quadratic loss differentials. * p<0.10, ** p<0.05, *** p<0.01.

COVID-era pseudo-out-of-sample forecasts. Given the limited power of DM tests,

the COVID-era inflation surge provides a useful episode for pseudo-out-of-sample compar-

isons, since the models are estimated without exposure to this period. Figure D.1 plots

one-quarter-ahead pseudo-out-of-sample forecasts against realized goods and headline in-

flation from 2019q4 onward, using both SPF and Michigan inflation expectations. Quarterly

forecasts are transformed into four-quarter inflation for the plots. For comparability with

the main text, we show the stock-based and canonical NKPCs (the CES-demand NKPC
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behaves similarly to the canonical NKPC). The patterns mirror our in-sample results: the

stock-based NKPC tracks the data more closely, especially during the COVID-era run-up

in goods inflation. In particular, for headline inflation with Michigan expectations, the

stock-based NKPC also anticipates an earlier pickup and earlier peak—albeit a lower one

than the canonical NKPC—followed by a faster reversal.

Figure D.1: Pseudo-out-of-sample Model Fit (One-quarter-ahead)

(a) Goods PCE Inflation – SPF
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(b) Goods PCE Inflation – Michigan
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(c) Headline PCE Inflation – SPF
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(d) Headline PCE Inflation – Michigan
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Notes: Panels A and B plot one-quarter-ahead pseudo–out-of-sample forecasts for goods PCE inflation using
year-ahead SPF (A) and Michigan (B) expectations. Panels C and D show the corresponding forecasts for
headline PCE inflation using year-ahead SPF (C) and Michigan (D) expectations. Quarterly forecasts are
transformed into four-quarter inflation for the plots.
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D.3 Alternative marginal cost proxies

We estimate the canonical NKPC regression with and without the inventory-sales ratio

across several commonly used proxies for real marginal cost. Table D.4 reports results

using goods PCE inflation, and Table D.5 reports results using headline PCE inflation. In

both tables, columns (1) and (2) use the inverse of the unemployment rate gap, constructed

as described in the main text; columns (3) and (4) use the labor share gap; and columns

(5) and (6) use the unit labor cost gap, with both gap measures constructed using the

Hamilton filter. Finally, columns (7) and (8) use the CBO’s output gap. Across all four

proxies, including the inventory-sales ratio as an observable improves the fit of the NKPC:

the adjusted R-squared value in columns (2), (4), (6), and (8), are consistently higher than

those in columns (1), (3), (5), and (7), respectively.
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Table D.4: NKPC Estimates for Goods PCE Inflation (SPF Expectations)

(1) (2) (3) (4) (5) (6) (7) (8)

Lagged inflation 0.342∗∗ 0.0223 0.336∗∗ 0.0178 0.345∗∗∗ -0.00727 0.329∗∗ 0.0287

(0.131) (0.0998) (0.130) (0.104) (0.127) (0.0933) (0.132) (0.102)

Exp. inflation (SPF) 0.369 1.237∗∗∗ 0.451 1.432∗∗∗ 0.395 1.399∗∗∗ 0.323 1.198∗∗∗

(0.284) (0.423) (0.334) (0.440) (0.333) (0.440) (0.278) (0.417)

Unemp. rate gap (inverse) 0.0303 0.269∗

(0.145) (0.140)

Labor share gap -0.127 0.139

(0.115) (0.106)

Unit labor cost gap -0.00943 0.183∗

(0.135) (0.0963)

Output gap (CBO) 0.223 0.245∗

(0.155) (0.127)

IS ratio gap -0.452∗∗∗ -0.473∗∗∗ -0.469∗∗∗ -0.432∗∗∗

(0.0861) (0.0856) (0.0848) (0.0836)

Constant -0.282 -2.211∗∗ -0.526 -2.913∗∗ -0.379 -2.794∗∗ -0.0325 -2.167∗∗

(0.868) (1.105) (0.978) (1.141) (0.995) (1.150) (0.869) (1.088)

Observations 167 167 164 164 164 164 167 167

Adjusted R-squared 0.130 0.390 0.136 0.395 0.130 0.399 0.144 0.391

Notes: Newey-West standard errors are reported in parentheses. * denotes 10% significance, ** denotes 5% significance, *** denotes 1%
significance.
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Table D.5: NKPC Estimates for Headline PCE Inflation (SPF Expectations)

(1) (2) (3) (4) (5) (6) (7) (8)

Lagged inflation 0.455∗∗∗ 0.123 0.458∗∗∗ 0.194 0.459∗∗∗ 0.0841 0.429∗∗∗ 0.140

(0.135) (0.117) (0.131) (0.122) (0.125) (0.105) (0.139) (0.122)

Exp. inflation (SPF) 0.321∗∗ 0.842∗∗∗ 0.369∗ 0.863∗∗∗ 0.308∗ 0.891∗∗∗ 0.316∗∗ 0.804∗∗∗

(0.160) (0.203) (0.188) (0.239) (0.171) (0.208) (0.159) (0.199)

Unemp. rate gap (inverse) 0.0744 0.226∗∗∗

(0.0630) (0.0701)

Labor share gap -0.0830 0.0123

(0.0550) (0.0591)

Unit labor cost gap 0.0431 0.178∗∗∗

(0.0537) (0.0498)

Output gap (CBO) 0.149∗∗ 0.187∗∗∗

(0.0718) (0.0652)

IS ratio gap -0.210∗∗∗ -0.193∗∗∗ -0.216∗∗∗ -0.192∗∗∗

(0.0431) (0.0477) (0.0433) (0.0413)

Constant 0.461 -0.106 0.256 -0.494 0.424 -0.308 0.566∗ -0.103

(0.313) (0.431) (0.373) (0.495) (0.364) (0.465) (0.325) (0.424)

Observations 167 167 164 164 164 164 167 167

Adjusted R-squared 0.315 0.533 0.320 0.504 0.312 0.539 0.333 0.530

Notes: Newey-West standard errors are reported in parentheses. * denotes 10% significance, ** denotes 5% significance, *** denotes 1%
significance.
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D.4 Core goods PCE inflation

Table D.6 reports NKPC regression results when using core goods inflation as the depen-

dent variable rather than overall goods inflation. To ensure consistency, we remove food

and energy components from both wholesale and retail inventories and sales. Specifically,

we exclude groceries, alcoholic beverages, and petroleum from wholesale measures, and

drop food and beverage stores from retail inventories and sales as well as gasoline sta-

tions from retail sales. Constructing these core-consistent measures requires more detailed

category-level data, which are only available beginning in 1992, reducing the sample to 122

observations. Within this sample, our results continue to hold for core goods PCE: the co-

efficient on the inventory-sales ratio remains negative and statistically significant, and the

adjusted R-squared improves markedly for the stock-based NKPC relative to the canonical

NKPC.
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Table D.6: NKPC Estimates for Core Goods PCE Inflation

(1) (2) (3) (4) (5) (6)

Lagged inflation 0.606∗∗∗ 0.592∗∗∗ 0.330∗∗ 0.398∗∗∗ 0.373∗∗∗ 0.256∗∗

(0.143) (0.148) (0.127) (0.129) (0.128) (0.121)

Exp. inflation (SPF) -0.366 -0.129 0.836

(0.320) (0.326) (0.522)

Exp. inflation (Michigan) 0.558∗∗∗ 0.596∗∗∗ 0.442∗∗∗

(0.175) (0.185) (0.123)

Marginal cost 0.022 -0.053

(0.079) (0.078)

Exp. marginal cost -0.031 -0.073∗

(0.039) (0.044)

Exp. marginal cost growth -0.112 -0.077

(0.092) (0.089)

IS ratio -0.182∗∗ -0.145∗∗

(0.069) (0.065)

Constant 0.842 0.250 -2.013 -2.252∗∗∗ -2.400∗∗∗ -1.758∗∗∗

(0.882) (0.850) (1.250) (0.594) (0.649) (0.498)

Observations 122 122 122 122 122 122

Adjusted R-squared 0.338 0.339 0.493 0.415 0.427 0.533

Notes: All the variables are described in the main text. For example, the marginal cost is proxied by the
inverse of the unemployment gap and the expected marginal cost is defined as the sum of the expected
real interest rate and the expected inverse of the unemployment gap. The expected marginal cost growth
is the difference between the expected marginal cost and the marginal cost. Newey–West standard errors
are reported in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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D.5 Introducing a nonlinear inventory specification

In this section we consider one specific form of nonlinearity in the inventory channel: an

interaction between the inventory–sales ratio gap and an indicator for whether the gap is

negative or positive. This specification is motivated by the idea that inventory shortages

may affect markups differently from inventory surpluses, and thus captures a potentially

important asymmetry of interest to the literature. We emphasize, however, that this is

only one way of modeling nonlinearities in the NKPC. A fuller exploration of alternative

nonlinear specifications is an important question for future research and lies beyond the

scope of this paper. Our main contribution is to document robust evidence of a strong

linear effect of inventories on inflation dynamics, a relationship that has not been firmly

established in the prior literature.

Columns (2) and (5) of Tables D.7 and D.8 report the stock-based NKPC estimates,

fitted to goods and headline PCE, respectively, when the regression is augmented with a

nonlinear inventory term that interacts the inventory–sales ratio gap with an indicator for

whether the gap is negative. The coefficient on the linear inventory-sales ratio gap remains

negative in both regressions, consistent with the baseline linear results. The interaction term

also enters with a negative sign, suggesting possible nonlinear effects when inventories fall

short of trend.

The evidence for such nonlinearity, however, is weak. The nonlinear term is estimated

imprecisely, with absolute t-statistics close to or below one, and its inclusion reduces the

precision of the linear inventory coefficient, which loses conventional statistical signifi-

cance. Nevertheless, the linear inventory-sales ratio gap continues to emerge as the primary

inventory-related driver of inflation dynamics in these regressions.

To assess whether the weaker significance reflects collinearity with the nonlinear inter-

action rather than the disappearance of the linear effect, we re-estimate the specification

using an interaction term for positive inventory-sales ratio gaps. In columns (3) and (6)

of the tables, the linear inventory coefficient remains negative and statistically significant,

while the nonlinear interaction is small and insignificant. Unlike the negative-gap spec-

ification, the positive-gap interaction does not appear strongly collinear with the linear

inventory term in our data, which is why the linear coefficient remains precisely estimated.
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These results suggest that the weaker significance in the negative-gap specification reflects

multicollinearity, not the absence of the linear inventory channel. Overall, the evidence

points to a robust linear effect of inventories on inflation, with only limited and imprecise

signs of potential nonlinearities.

Table D.7: Inventory Nonlinearity in Stock-based NKPC (Goods PCE)

(1) (2) (3) (4) (5) (6)

Lagged inflation 0.0473 0.0412 0.0412 -0.0171 -0.0179 -0.0179

(0.0998) (0.0909) (0.0909) (0.104) (0.101) (0.101)

Exp. inflation (SPF) 1.172∗∗ 1.119∗∗ 1.119∗∗

(0.459) (0.453) (0.453)

Exp. inflation (Michigan) 1.250∗∗∗ 1.212∗∗∗ 1.212∗∗∗

(0.360) (0.393) (0.393)

Exp. marginal cost growth 0.0475 0.106 0.106 0.226 0.255∗ 0.255∗

(0.166) (0.140) (0.140) (0.149) (0.137) (0.137)

IS ratio gap -0.430∗∗∗ -0.306 -0.511∗∗∗ -0.332∗∗∗ -0.268 -0.379∗∗∗

(0.0917) (0.185) (0.0768) (0.0796) (0.178) (0.0769)

IS ratio gap < 0 -0.205 -0.111

(0.193) (0.207)

IS ratio gap > 0 0.205 0.111

(0.193) (0.207)

Constant -2.299∗∗ -2.552∗∗ -2.552∗∗ -4.048∗∗∗ -4.113∗∗∗ -4.113∗∗∗

(1.158) (1.161) (1.161) (1.341) (1.267) (1.267)

Observations 167 167 167 167 167 167

Adjusted R-squared 0.375 0.378 0.378 0.425 0.423 0.423

Notes: Newey-West standard errors are reported in parentheses. * denotes 10% significance, ** denotes 5%
significance, *** denotes 1% significance.
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Table D.8: Inventory Nonlinearity in the Stock-based NKPC for Headline PCE Inflation

(1) (2) (3) (4) (5) (6)

Lagged inflation 0.197 0.192∗ 0.192∗ 0.0404 0.0404 0.0404

(0.120) (0.112) (0.112) (0.102) (0.102) (0.102)

Exp. inflation (SPF) 0.665∗∗∗ 0.651∗∗∗ 0.651∗∗∗

(0.225) (0.226) (0.226)

Exp. inflation (Michigan) 0.810∗∗∗ 0.808∗∗∗ 0.808∗∗∗

(0.149) (0.164) (0.164)

Exp. marginal cost growth 0.0888 0.106 0.106 0.212∗∗∗ 0.213∗∗∗ 0.213∗∗∗

(0.0938) (0.0819) (0.0819) (0.0799) (0.0672) (0.0672)

IS ratio gap -0.189∗∗∗ -0.153∗ -0.213∗∗∗ -0.137∗∗∗ -0.134 -0.139∗∗∗

(0.0475) (0.0891) (0.0403) (0.0393) (0.0821) (0.0382)

IS ratio gap < 0 -0.0604 -0.00451

(0.0897) (0.0931)

IS ratio gap > 0 0.0604 0.00451

(0.0897) (0.0931)

Constant -0.0274 -0.0979 -0.0979 -1.105∗∗ -1.107∗∗ -1.107∗∗

(0.530) (0.518) (0.518) (0.494) (0.485) (0.485)

Observations 167 167 167 167 167 167

Adjusted R-squared 0.500 0.499 0.499 0.574 0.571 0.571

Note: Newey-West standard errors are reported in parentheses. * denotes 10% significance, ** denotes 5%
significance, *** denotes 1% significance.
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